ﻻ يوجد ملخص باللغة العربية
The hydrogen cyanide (HCN) molecule in the planetary atmosphere is key to the formation of building blocks of life. We present the spectroscopic detection of the rotational molecular line of nitrile species hydrogen cyanide (HCN) in the atmosphere of Saturn using the archival data of the Atacama Large Millimeter/Submillimeter Array (ALMA) in band 7 observation. The strong rotational emission line of HCN is detected at frequency $ u$ = 354.505 GHz (>4$sigma$ statistical significance). We also detect the rotational emission line of carbon monoxide (CO) at frequency $ u$ = 345.795 GHz. The statistical column density of hydrogen cyanide and carbon monoxide emission line is N(HCN)$sim$2.42$times$10$^{16}$ cm$^{-2}$ and N(CO)$sim$5.82$times$10$^{17}$ cm$^{-2}$. The abundance of HCN and CO in the atmosphere of Saturn relative to the H$_{2}$ is estimated to be f(HCN)$sim$1.02$times$10$^{-9}$ and f(CO)$sim$2.42$times$10$^{-8}$. We discussed possible chemical pathways to the formation of the detected nitrile gas HCN in the atmosphere of Saturn.
The extremely thin atmosphere of Jupiters volcanic moon Io primarily consists of sulfur (S), sodium (Na), and oxygen (O) molecules that are controlled by the combination of the sublimation and volcanic outgasses. We present the first spectroscopic de
The space and ground-based observations have shown a lot of activities and instabilities in the atmosphere of the giant ice planet Neptune. Using the archival data of high resolution Atacama Large Millimeter/Submillimeter Array (ALMA) with band 7 obs
Line-intensity mapping surveys probe large-scale structure through spatial variations in molecular line emission from a population of unresolved cosmological sources. Future such surveys of carbon monoxide line emission, specifically the CO(1-0) line
Plutos icy surface has changed colour and its atmosphere has swelled since its last closest approach to the Sun in 1989. The thin atmosphere is produced by evaporating ices, and so can also change rapidly, and in particular carbon monoxide should be
Vinyl cyanide (C$_2$H$_3$CN) is theorized to form in Titans atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azoto