ﻻ يوجد ملخص باللغة العربية
Using two sets of large $N$-body simulations, we study the origin of the correlations of halo assembly time ($z_{rm f}$), concentration ($v_{rm max}/v_{rm 200}$) and spin ($lambda$) with the large-scale evolved density field at given halo mass, i.e. the secondary bias. We find that the secondary bias is the secondary effect of the correlations of halo properties with the linear density estimated at the same comoving scale. Using the linear density on different scales, we find two types of correlations. The internal correlation, which reflects the correlation of halo properties with the mean linear over-density $delta_{rm L}$ within the halo Lagrangian radius $R_{rm L}$, is positive for both $z_{rm f}$ and $v_{rm max}/v_{rm 200}$, and negative for $lambda$. The external correlation, which describes the correlation of halo properties with linear overdensity at $R>R_{rm L}$ for given $delta_{rm L}$, shows trends opposite to the internal correlation. Both of the external and internal correlations depend only weakly on halo mass, indicating a similar origin for halos of different masses. Our findings offer a transparent perspective on the origin of the secondary bias. The secondary bias can be largely explained by the competition of the external and internal correlations together with the correlation of the linear density field on different scales. These two types of correlations combined can establish the complex halo-mass dependence of the secondary bias observed in the simulations.
We explore the phenomenon commonly known as halo assembly bias, whereby dark matter halos of the same mass are found to be more or less clustered when a second halo property is considered, for halos in the mass range $3.7 times 10^{11} ; h^{-1} mathr
We use the improved IllustrisTNG300 magneto-hydrodynamical cosmological simulation to revisit the effect that secondary halo bias has on the clustering of the central galaxy population. With a side length of 205 $h^{-1}$Mpc and significant improvemen
The apparent distribution of large-scale structures in the universe is sensitive to the velocity/potential of the sources as well as the potential along the line-of-sight through the mapping from real space to redshift space (redshift-space distortio
It has been recently shown that any halo velocity bias present in the initial conditions does not decay to unity, in agreement with predictions from peak theory. However, this is at odds with the standard formalism based on the coupled fluids approxi
We investigate the correlation between nine different dark matter halo properties using a rank correlation analysis and a Principal Component Analysis for a sample of haloes spanning five orders of magnitude in mass. We consider mass and dimensionles