ﻻ يوجد ملخص باللغة العربية
The work continues the authors many-year research in theory of maximal branching processes, which are obtained from classical branching processes by replacing the summation of descendant numbers with taking the maximum. One can say that in each generation, descendants of only one particle survive, namely those of the particle that has the largest number of descendants. Earlier, the author generalized processes with integer values to processes with arbitrary nonnegative values, investigated their properties, and proved limit theorems. Then processes with several types of particles were introduced and studied. In the present paper we introduce the notion of maximal branching processes in random environment (with a single type of particles) and an important case of a power-law random environment. In the latter case, properties of maximal branching processes are studied and the ergodic theorem is proved. As applications, we consider gated infinite-server queues.
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. This model is known to exhibit a phase transition: If $d ge 3$ and the environment is not too random, then, the total population gro
We study survival of nearest-neighbour branching random walks in random environment (BRWRE) on ${mathbb Z}$. A priori there are three different regimes of survival: global survival, local survival, and strong local survival. We show that local and st
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
Using a high performance computer cluster, we run simulations regarding an open problem about d-dimensional critical branching random walks in a random IID environment The environment is given by the rule that at every site independently, with probab