ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate mass dileptons as pre-equilibrium probes in heavy ion collisions

109   0   0.0 ( 0 )
 نشر من قبل Maurice Coquet
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The production of dileptons with an invariant mass in the range 1 GeV < M < 5 GeV provides unique insight into the approach to thermal equilibrium in ultrarelativistic nucleus-nucleus collisions. In this mass range, they are produced through the annihilation of quark-antiquark pairs in the early stages of the collision. They are sensitive to the anisotropy of the quark momentum distribution, and also to the quark abundance, which is expected to be underpopulated relative to thermal equilibrium. We take into account both effects based on recent theoretical developments in QCD kinetic theory, and study how the dilepton mass spectrum depends on the shear viscosity to entropy ratio that controls the equilibration time. We evaluate the background from the Drell-Yan process and argue that future detector developments can suppress the additional background from semileptonic decays of heavy flavors.

قيم البحث

اقرأ أيضاً

Dileptons are considered as one of the cleanest signals of the quark-gluon plasma (QGP), however, the QGP radiation is masked by many background sources from either hadronic decays or semileptonic decays from correlated charm pairs. In this study we investigate the relative contribution of these channels in heavy-ion collisions from $sqrt{s_{rm NN}}=$ 8 GeV to 5 TeV with a focus on the competition between the thermal QGP radiation and the semileptonic decays from correlated $D-$meson pairs. As a tool we employ the parton-hadron-string dynamics (PHSD) transport approach to study dilepton spectra in Pb+Pb (Au+Au) collisions in a wide energy range incorporating for the first time a fully microscopic treatment of the charm dynamics and their semileptonic decays. We find that the dileptons from correlated $D-$meson decays dominate the thermal radiation from the QGP in central Pb+Pb collisions at the intermediate masses (1.2 GeV $< M <$ 3 GeV) for $sqrt{s_{rm NN}} > $ 40 GeV, while for $sqrt{s_{rm NN}}=$ 8 to 20 GeV the contribution from $D,{bar D}$ decays to the intermediate mass dilepton spectra is subleading such that one should observe a rather clear signal from the QGP radiation. We, furthermore, study the $p_T$-spectra and the $R_{AA}(p_T)$ of single electrons at different energies as well as the excitation function of the inverse slope of the $m_T$- spectra for intermediate-mass dileptons from the QGP and from charm decays. We find moderate but characteristic changes in the inverse slope parameter for $sqrt{s_{rm NN}} > $ 20 GeV which can be observed experimentally in high statistics data. Additionally, we provide detailed predictions for dilepton spectra from Pb+Pb collisions at $sqrt{s_{rm NN}} = $ 5.02 TeV.
The dilepton transverse momentum spectra and invariant mass spectra for low $p_T <0.15$~GeV/c in Au+Au collisions of different centralities at $sqrt{s_{NN}}$ = 200 GeV are studied within the parton-hadron-string dynamics (PHSD) transport approach. Th e PHSD describes the whole evolution of the system on a microscopic basis, incorporates hadronic and partonic degrees-of-freedom, the dynamical hadronization of partons and hadronic rescattering. For dilepton production in p+p, p+A and A+A reactions the PHSD incorporates the leading hadronic and partonic channels (also for heavy flavors) and includes in-medium effects such as a broadening of the vector meson spectral functions in hadronic matter and a modification of initial heavy-flavor correlations by interactions with the partonic and hadronic medium. The transport calculations reproduce well the momentum integrated invariant mass spectra from the STAR Collaboration for minimum bias Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV, while the description of the STAR data - when gating on low $p_T < 0.15$ GeV/c - is getting worse when going from central to peripheral collisions. An analysis of the transverse momentum spectra shows that the data for peripheral (60-80%) collisions are well reproduced for $p_T>0.2$ GeV/c while the strong peak at low $p_T < 0.15$ GeV/c, that shows up in the experimental data for the mass bins ($0.4 < M < 0.7$ GeV and $1.2 < M < 2.6$ GeV), is fully missed by the PHSD and cannot be explained by the standard in-medium effects. This provides a new puzzle for microscopic descriptions of low $p_T$ dilepton data from the STAR Collaboration.
Thermalized matter created in non-central relativistic heavy-ion collisions is expected to be tilted in the reaction plane with respect to the beam axis. The most notable consequence of this forward-backward symmetry breaking is the observation of ra pidity-odd directed flow for charged particles. On the other hand, the production points for heavy quarks are forward-backward symmetric and shifted in the transverse plane with respect to the fireball. The drag of heavy quarks from the asymmetrically distributed thermalized matter generates a large directed flow for heavy flavor mesons. We predict a very large rapidity odd directed flow of $D$ mesons in non-central Au-Au collisions at $sqrt{s_{NN}}=200$ GeV, $several$ $times$ $larger$ than for charged particles. A possible experimental observation of a large directed flow for heavy flavor mesons would represent an almost direct probe of the 3-dimensional distribution of matter in heavy-ion collisions.
We study the event-by-event generation of flow vorticity in RHIC Au + Au collisions and LHC Pb + Pb collisions by using the HIJING model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the v orticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.
We discuss the prospects of using jets as precision probes in electron-nucleus collisions at the future Electron-Ion Collider. Jets produced in deep-inelastic scattering can be calibrated by a measurement of the scattered electron. Such electron-jet tag and probe measurements call for an approach that is orthogonal to most HERA jet measurements as well as previous studies of jets at the future EIC. We present observables such as the electron-jet momentum balance, azimuthal correlations and jet substructure, which can provide constraints on the parton transport coefficient in nuclei. We compare simulations and analytical calculations and provide estimates of the expected medium effects. Implications for detector design at the future EIC are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا