ترغب بنشر مسار تعليمي؟ اضغط هنا

High sensitivity neutrinoless double-beta decay search with one tonne-year of CUORE data

136   0   0.0 ( 0 )
 نشر من قبل Alice Campani
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite being the feeblest and lightest of the known particles, the neutrino is one of the most abundant particles in the Universe and has played a critical role in its evolution. Within standard cosmological models, most of the neutrinos were produced in the Big Bang and completely decoupled from matter after the first second. During that short time it is possible that through the process of Leptogenesis neutrinos helped to produce the matter/anti-matter asymmetry that sets the stage for all of the structures that we see in the universe today. However, these theories generally require the condition that the neutrino is a so-called Majorana particle, acting as its own anti-particle. The search for the extremely rare neutrinoless double-beta $(0 ubetabeta)$ decay is currently the most practical way to address this question. Here we present the results of the first tonne-year exposure search for $0 ubetabeta$ decay of $^{130}$Te with CUORE. With a median half-life exclusion sensitivity of $2.8times10^{25}$ yr, this is the most sensitive search for $0 ubetabeta$ decay in $^{130}$Te to date. We find no evidence for $0 ubetabeta$ decay and set a lower bound of $T_{1/2} > 2.2times10^{25}$ yr at a 90% credibility interval. CUORE is the largest, coldest solid-state detector operating below 100mK in the world. The achievement of 1 tonne-year of exposure demonstrates the long-term reliability and potential of cryogenic technology at this scale, with wide ranging applications to next-generation rare-event searches, dark matter searches, and even large-scale quantum computing.

قيم البحث

اقرأ أيضاً

We present a study of the sensitivity and discovery potential of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity fo r various background scenarios are presented, and an extension of the sensitivity formulation to the discovery potential case is also discussed. Assuming a background rate of 10^-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T_1/2(1 sigma) = 1.6 times 10^26 y and thus a potential to probe the effective Majorana neutrino mass down to 40-100 meV; the sensitivity at 1.64 sigma, which corresponds to 90% C.L., will be T_1/2(1.64 sigma) = 9.5 times 10^25 y. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.
We report the results of a search for neutrinoless double-beta decay in a 9.8~kg$cdot$yr exposure of $^{130}$Te using a bolometric detector array, CUORE-0. The characteristic detector energy resolution and background level in the region of interest a re $5.1pm 0.3{rm~keV}$ FWHM and $0.058 pm 0.004,(mathrm{stat.})pm 0.002,(mathrm{syst.})$~counts/(keV$cdot$kg$cdot$yr), respectively. The median 90%~C.L. lower-limit sensitivity of the experiment is $2.9times 10^{24}~{rm yr}$ and surpasses the sensitivity of previous searches. We find no evidence for neutrinoless double-beta decay of $^{130}$Te and place a Bayesian lower bound on the decay half-life, $T^{0 u}_{1/2}>$~$ 2.7times 10^{24}~{rm yr}$ at 90%~C.L. Combining CUORE-0 data with the 19.75~kg$cdot$yr exposure of $^{130}$Te from the Cuoricino experiment we obtain $T^{0 u}_{1/2} > 4.0times 10^{24}~mathrm{yr}$ at 90%~C.L.~(Bayesian), the most stringent limit to date on this half-life. Using a range of nuclear matrix element estimates we interpret this as a limit on the effective Majorana neutrino mass, $m_{betabeta}< 270$ -- $760~mathrm{meV}$.
The nEXO neutrinoless double beta decay experiment is designed to use a time projection chamber and 5000 kg of isotopically enriched liquid xenon to search for the decay in $^{136}$Xe. Progress in the detector design, paired with higher fidelity in i ts simulation and an advanced data analysis, based on the one used for the final results of EXO-200, produce a sensitivity prediction that exceeds the half-life of $10^{28}$ years. Specifically, improvements have been made in the understanding of production of scintillation photons and charge as well as of their transport and reconstruction in the detector. The more detailed knowledge of the detector construction has been paired with more assays for trace radioactivity in different materials. In particular, the use of custom electroformed copper is now incorporated in the design, leading to a substantial reduction in backgrounds from the intrinsic radioactivity of detector materials. Furthermore, a number of assumptions from previous sensitivity projections have gained further support from interim work validating the nEXO experiment concept. Together these improvements and updates suggest that the nEXO experiment will reach a half-life sensitivity of $1.35times 10^{28}$ yr at 90% CL in 10 years of data taking, covering the parameter space associated with the inverted neutrino mass ordering, along with a significant portion of the parameter space for the normal ordering scenario, for almost all nuclear matrix elements. The effects of backgrounds deviating from the nominal values used for the projections are also illustrated, concluding that the nEXO design is robust against a number of imperfections of the model.
We report new results from the search for neutrinoless double-beta decay in $^{130}$Te with the CUORE detector. This search benefits from a four-fold increase in exposure, lower trigger thresholds and analysis improvements relative to our previous re sults. We observe a background of $(1.38pm0.07)cdot10^{-2}$ counts$/($keV$cdot$kg$cdot$yr$)$ in the $0 ubetabeta$ decay region of interest and, with a total exposure of 372.5 kg$cdot$yr, we attain a median exclusion sensitivity of $1.7cdot10^{25}$ yr. We find no evidence for $0 ubetabeta$ decay and set a $90%$ CI Bayesian lower limit of $3.2cdot10^{25}$ yr on the $^{130}$Te half-life for this process. In the hypothesis that $0 ubetabeta$ decay is mediated by light Majorana neutrinos, this results in an upper limit on the effective Majorana mass of 75-350 meV, depending on the nuclear matrix elements used.
Neutrinoless double-beta decay experiments can potentially determine the Majorana or Dirac nature of the neutrino, and aid in understanding the neutrino absolute mass scale and hierarchy. Future 76Ge-based searches target a half-life sensitivity of > 10^27 y to explore the inverted neutrino mass hierarchy. Reaching this sensitivity will require a background rate of <1 count tonne^-1 y^-1 in a 4-keV-wide spectral region of interest surrounding the Q value of the decay. We investigate the overburden required to reach this background goal in a tonne-scale experiment with a compact (copper and lead) shield based on Monte Carlo calculations of cosmic-ray background rates. We find that, in light of the presently large uncertainties in these types of calculations, a site with an underground depth >~5200 mwe is required for a tonne-scale experiment with a compact shield similar to the planned 40-kg MAJORANA DEMONSTRATOR. The required overburden is highly dependent on the chosen shielding configuration and could be relaxed significantly if, for example, a liquid cryogen and water shield, or an active neutron shield were employed. Operation of the MAJORANA DEMONSTRATOR and GERDA detectors will serve to reduce the uncertainties on cosmic-ray background rates and will impact the choice of shielding style and location for a future tonne-scale experiment. 4/2013: The peer review process revealed that one of the veto rejection factors (the factor-of-4 described on p12) needs to be better established. Our reevaluation of this parameter to date has not yielded strong support for the value stated in the manuscript, and we require further study to develop a solid estimate. This further study will supersede the work described in this manuscript, and may or may not lead to the same conclusion regarding the ~>5200 mwe requirement for future tonne-scale 76Ge neutrinoless double beta decay experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا