ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhancing interferometer sensitivity without sacrificing bandwidth and stability: beyond single-mode and resolved-sideband approximation

159   0   0.0 ( 0 )
 نشر من قبل Xiang Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum noise limits the sensitivity of precision measurement devices, such as laser interferometer gravitational-wave observatories and axion detectors. In the shot-noise-limited regime, these resonant detectors are subject to a trade-off between the peak sensitivity and bandwidth. One approach to circumvent this limitation in gravitational-wave detectors is to embed an anomalous-dispersion optomechanical filter to broaden the bandwidth. The original filter cavity design, however, makes the entire system unstable. Recently, we proposed the coherent feedback between the arm cavity and the optomechanical filter to eliminate the instability via PT-symmetry. The original analysis based upon the Hamiltonian formalism adopted the single-mode and resolved-sideband approximations. In this paper, we go beyond these approximations and consider realistic parameters. We show that the main conclusion concerning stability remains intact, with both Nyquist analysis and a detailed time-domain simulation.

قيم البحث

اقرأ أيضاً

We address the validity of the single-mode approximation that is commonly invoked in the analysis of entanglement in non-inertial frames and in other relativistic quantum information scenarios. We show that the single-mode approximation is not valid for arbitrary states, finding corrections to previous studies beyond such approximation in the bosonic and fermionic cases. We also exhibit a class of wave packets for which the single-mode approximation is justified subject to the peaking constraints set by an appropriate Fourier transform.
The measurement of weak continuous forces exerted on a mechanical oscillator is a fundamental problem in various physical experiments. It is fundamentally impeded by quantum back-action from the meter used to sense the displacement of the oscillator. In the context of interferometric displacement measurements, we here propose and demonstrate the working principle of a scheme for coherent back-action cancellation. By measuring the amplitude quadrature of the light reflected from a detuned optomechanical cavity inside which a stiff optical spring is generated, back-action can be cancelled in a narrow band of frequencies. This method provides a simple way to improve the sensitivity in experiments limited by quantum back-action without injection of squeezed light or stable homodyne readout.
We realise a phase-sensitive closed-loop control scheme to engineer the fluctuations of the pump field which drives an optomechanical system, and show that the corresponding cooling dynamics can be significantly improved. In particular, operating in the counter-intuitive anti-squashing regime of positive feedback and increased field fluctuations, sideband cooling of a nanomechanical membrane within an optical cavity can be improved by 7.5~dB with respect to the case without feedback. Close to the quantum regime of reduced thermal noise, such feedback-controlled light would allow going well below the quantum backaction cooling limit.
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discor d has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.
We study a nonlinear interferometer consisting of two consecutive parametric amplifiers, where all three optical fields (pump, signal and idler) are treated quantum mechanically, allowing for pump depletion and other quantum phenomena. The interactio n of all three fields in the final amplifier leads to an interference pattern from which we extract the phase uncertainty. We find that the phase uncertainty oscillates around a saturation level that decreases as the mean number $N$ of input pump photons increases. For optimal interaction strengths, we also find a phase uncertainty below the shot-noise level and obtain a Heisenberg scaling $1/N$. This is in contrast to the conventional treatment within the parametric approximation, where the Heisenberg scaling is observed as a function of the number of down-converted photons inside the interferometer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا