ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser

105   0   0.0 ( 0 )
 نشر من قبل Yue Cao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The success of deep denoisers on real-world color photographs usually relies on the modeling of sensor noise and in-camera signal processing (ISP) pipeline. Performance drop will inevitably happen when the sensor and ISP pipeline of test images are different from those for training the deep denoisers (i.e., noise discrepancy). In this paper, we present an unpaired learning scheme to adapt a color image denoiser for handling test images with noise discrepancy. We consider a practical training setting, i.e., a pre-trained denoiser, a set of test noisy images, and an unpaired set of clean images. To begin with, the pre-trained denoiser is used to generate the pseudo clean images for the test images. Pseudo-ISP is then suggested to jointly learn the pseudo ISP pipeline and signal-dependent rawRGB noise model using the pairs of test and pseudo clean images. We further apply the learned pseudo ISP and rawRGB noise model to clean color images to synthesize realistic noisy images for denoiser adaption. Pseudo-ISP is effective in synthesizing realistic noisy sRGB images, and improved denoising performance can be achieved by alternating between Pseudo-ISP training and denoiser adaption. Experiments show that our Pseudo-ISP not only can boost simple Gaussian blurring-based denoiser to achieve competitive performance against CBDNet, but also is effective in improving state-of-the-art deep denoisers, e.g., CBDNet and RIDNet.

قيم البحث

اقرأ أيضاً

392 - Ke Yu , Zexian Li , Yue Peng 2021
Image Signal Processor (ISP) is a crucial component in digital cameras that transforms sensor signals into images for us to perceive and understand. Existing ISP designs always adopt a fixed architecture, e.g., several sequential modules connected in a rigid order. Such a fixed ISP architecture may be suboptimal for real-world applications, where camera sensors, scenes and tasks are diverse. In this study, we propose a novel Reconfigurable ISP (ReconfigISP) whose architecture and parameters can be automatically tailored to specific data and tasks. In particular, we implement several ISP modules, and enable backpropagation for each module by training a differentiable proxy, hence allowing us to leverage the popular differentiable neural architecture search and effectively search for the optimal ISP architecture. A proxy tuning mechanism is adopted to maintain the accuracy of proxy networks in all cases. Extensive experiments conducted on image restoration and object detection, with different sensors, light conditions and efficiency constraints, validate the effectiveness of ReconfigISP. Only hundreds of parameters need tuning for every task.
This paper reviews the second AIM learned ISP challenge and provides the description of the proposed solutions and results. The participating teams were solving a real-world RAW-to-RGB mapping problem, where to goal was to map the original low-qualit y RAW images captured by the Huawei P20 device to the same photos obtained with the Canon 5D DSLR camera. The considered task embraced a number of complex computer vision subtasks, such as image demosaicing, denoising, white balancing, color and contrast correction, demoireing, etc. The target metric used in this challenge combined fidelity scores (PSNR and SSIM) with solutions perceptual results measured in a user study. The proposed solutions significantly improved the baseline results, defining the state-of-the-art for practical image signal processing pipeline modeling.
Biologists all over the world use camera traps to monitor biodiversity and wildlife population density. The computer vision community has been making strides towards automating the species classification challenge in camera traps, but it has proven d ifficult to to apply models trained in one region to images collected in different geographic areas. In some cases, accuracy falls off catastrophically in new region, due to both changes in background and the presence of previously-unseen species. We propose a pipeline that takes advantage of a pre-trained general animal detector and a smaller set of labeled images to train a classification model that can efficiently achieve accurate results in a new region.
350 - Chuang Niu , Ge Wang 2021
This paper presents SPICE, a Semantic Pseudo-labeling framework for Image ClustEring. Instead of using indirect loss functions required by the recently proposed methods, SPICE generates pseudo-labels via self-learning and directly uses the pseudo-lab el-based classification loss to train a deep clustering network. The basic idea of SPICE is to synergize the discrepancy among semantic clusters, the similarity among instance samples, and the semantic consistency of local samples in an embedding space to optimize the clustering network in a semantically-driven paradigm. Specifically, a semantic-similarity-based pseudo-labeling algorithm is first proposed to train a clustering network through unsupervised representation learning. Given the initial clustering results, a local semantic consistency principle is used to select a set of reliably labeled samples, and a semi-pseudo-labeling algorithm is adapted for performance boosting. Extensive experiments demonstrate that SPICE clearly outperforms the state-of-the-art methods on six common benchmark datasets including STL10, Cifar10, Cifar100-20, ImageNet-10, ImageNet-Dog, and Tiny-ImageNet. On average, our SPICE method improves the current best results by about 10% in terms of adjusted rand index, normalized mutual information, and clustering accuracy.
We present a multiview pseudo-labeling approach to video learning, a novel framework that uses complementary views in the form of appearance and motion information for semi-supervised learning in video. The complementary views help obtain more reliab le pseudo-labels on unlabeled video, to learn stronger video representations than from purely supervised data. Though our method capitalizes on multiple views, it nonetheless trains a model that is shared across appearance and motion input and thus, by design, incurs no additional computation overhead at inference time. On multiple video recognition datasets, our method substantially outperforms its supervised counterpart, and compares favorably to previous work on standard benchmarks in self-supervised video representation learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا