ﻻ يوجد ملخص باللغة العربية
Cosmic voids as typical under-density regions in the large scale Universe are known for their hyperbolic properties as an ability to deviate the photon beams. The under-density then is acting as the negative curvature in the hyperbolic spaces. The hyperbolicity of voids has to lead to distortion in the statistical analysis at galactic surveys. We reveal the sensitivity of the hyperbolicity and hence of the distortion with respect to the ratio of void/wall scales which are observable parameters. This provides a principal possibility to use the distortion in the galactic surveys in revealing the line-of sight number of cosmic voids and their characteristic scales.
Cosmic voids - the low density regions in the Universe - as characteristic features of the large scale matter distribution, are known for their hyperbolic properties. The latter implies the deviation of photon beams due to their underdensity, thus mi
The currently released datasets of the observational surveys reveal the redshift dependence of the physical features of cosmic voids. We study the void induced hyperbolicity, that is the deviation of the photon beams propagating the voids, taking int
Cosmic Explorer (CE) is a next-generation ground-based gravitational-wave observatory concept, envisioned to begin operation in the 2030s, and expected to be capable of observing binary neutron star and black hole mergers back to the time of the firs
We report new measurements of the acoustic excitation of an Al5056 superconductive bar when hit by an electron beam, in a previously unexplored temperature range, down to 0.35 K. These data, analyzed together with previous results of the RAP experime
Aims: We assess the sensitivity of void shapes to the nature of dark energy that was pointed out in recent studies. We investigate whether or not void shapes are useable as an observational probe in galaxy redshift surveys. We focus on the evolution