ترغب بنشر مسار تعليمي؟ اضغط هنا

The initial gas-phase sulfur abundance in the Orion Molecular Cloud from sulfur radio recombination lines

116   0   0.0 ( 0 )
 نشر من قبل J. R. Goicoechea
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The abundances of chemical elements and their depletion factors are essential parameters for understanding the composition of the gas and dust that are ultimately incorporated into stars and planets. Sulfur is an abundant but peculiar element in the sense that, despite being less volatile than other elements (e.g., carbon), it is not a major constituent of dust grains in diffuse interstellar clouds. Here, we determine the gas-phase carbon-to-sulfur abundance ratio, [C]/[S], and the sulfur abundance [S] in a dense star-forming cloud from new radio recombination lines (RRLs) detected with the Yebes 40m telescope - at relatively high frequencies (~40 GHz ~7 mm) and angular resolutions (down to 36) - in the Orion Bar, a rim of the Orion Molecular Cloud (OMC). We detect nine Cnalpha RRLs (with n=51 to 59) as well as nine narrow line features separated from the Cnalpha lines by delta v=-8.4+/-0.3 km s^-1. Based on this velocity separation, we assign these features to sulfur RRLs, with little contribution of RRLs from the more condensable elements Mg, Si, or Fe. Sulfur RRLs lines trace the photodissociation region (PDR) of the OMC. In these predominantly neutral gas layers, up to A_V~4, the ions C+ and S+ lock in most of the C and S gas-phase reservoir. We determine a relative abundance of [C]_Ori/[S]_Ori=10.4+/-0.6 and, adopting the same [C]_Ori measured in the translucent gas toward star theta^1 Ori B, an absolute abundance of [S]_Ori=(1.4+/-0.4)x10^-5. This value is consistent with emission models of the observed sulfur RRLs if N(S+)~7x10^17 cm^-2 (beam-averaged). The [S]_Ori is the initial sulfur abundance in the OMC, before an undetermined fraction of the [S]_Ori goes into molecules and ice mantles in the cloud interior. The inferred abundance [S]_Ori matches the solar abundance, thus implying that there is little depletion of sulfur onto rocky dust grains, with D(S)=0.0+/-0.2 dex.

قيم البحث

اقرأ أيضاً

251 - Gan Luo , Siyi Feng , Di Li 2019
We present an observational study of the sulfur (S)-bearing species towards Orion KL at 1.3 mm by combining ALMA and IRAM-30,m single-dish data. At a linear resolution of $sim$800 au and a velocity resolution of 1 $mathrm{km, s^{-1}, }$, we have iden tified 79 molecular lines from 6 S-bearing species. In these S-bearing species, we found a clear dichotomy between carbon-sulfur compounds and carbon-free S-bearing species in various characteristics, e.g., line profiles, spatial morphology, and molecular abundances with respect to $rm H_2$. Lines from the carbon-sulfur compounds (i.e., OCS, $^{13}$CS, H$_2$CS) exhibit spatial distributions concentrated around the continuum peaks and extended to the south ridge. The full width at half maximum (FWHM) linewidth of these molecular lines is in the range of 2 $sim$ 11 $mathrm{km, s^{-1}, }$. The molecular abundances of OCS and H$_2$CS decrease slightly from the cold ($sim$68 K) to the hot ($sim$176 K) regions. In contrast, lines from the carbon-free S-bearing species (i.e., SO$_2$, $^{34}$SO, H$_2$S) are spatially more extended to the northeast of mm4, exhibiting broader FWHM linewidths (15 $sim$ 26 $mathrm{km, s^{-1}, }$). The molecular abundances of carbon-free S-bearing species increase by over an order of magnitude as the temperature increase from 50 K to 100 K. In particular, $mathrm{^{34}SO/^{34}SO_2}$ and $mathrm{OCS/SO_2}$ are enhanced from the warmer regions ($>$100 K) to the colder regions ($sim$50 K). Such enhancements are consistent with the transformation of SO$_2$ at warmer regions and the influence of shocks.
115 - Simone Daflon 2009
Sulfur abundances are derived for a sample of ten B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, SII and SIII. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S)=7.15+/-0.05. This average abundance result is in agreement with the recommended solar value (both from modelling of the photospheres in 1-D and 3-D, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ~4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037+/-0.012 dex/kpc.
Hydride molecules lie at the base of interstellar chemistry, but the synthesis of sulfuretted hydrides is poorly understood. Motivated by new observations of the Orion Bar PDR - 1 resolution ALMA images of SH+; IRAM 30m detections of H2S, H2S34, and H2S33; H3S+ (upper limits); and SOFIA observations of SH - we perform a systematic study of the chemistry of S-bearing hydrides. We determine their column densities using coupled excitation, radiative transfer as well as chemical formation and destruction models. We revise some of the key gas-phase reactions that lead to their chemical synthesis. This includes ab initio quantum calculations of the vibrational-state-dependent reactions SH+ + H2 <-> H2S+ + H and S + H2 <-> SH + H. We find that reactions of UV-pumped H2 (v>1) with S+ explain the presence of SH+ in a high thermal-pressure gas component, P_th~10^8 cm^-3 K, close to the H2 dissociation front. However, subsequent hydrogen abstraction reactions of SH+, H2S+, and S with vibrationally excited H2, fail to ultimately explain the observed H2S column density (~2.5x10^14 cm^-2, with an ortho-to-para ratio of 2.9+/-0.3). To overcome these bottlenecks, we build PDR models that include a simple network of grain surface reactions leading to the formation of solid H2S (s-H2S). The higher adsorption binding energies of S and SH suggested by recent studies imply that S atoms adsorb on grains (and form s-H2S) at warmer dust temperatures and closer to the UV-illuminated edges of molecular clouds. Photodesorption and, to a lesser extent, chemical desorption, produce roughly the same H2S column density (a few 10^14 cm-^2) and abundance peak (a few 10^-8) nearly independently of n_H and G_0. This agrees with the observed H2S column density in the Orion Bar as well as at the edges of dark clouds without invoking substantial depletion of elemental sulfur abundances.
We present a detailed characterization of the population of compact radio-continuum sources in W51 A using subarcsecond VLA and ALMA observations. We analyzed their 2-cm continuum, the recombination lines (RLs) H77$alpha$ and H30$alpha$, and the line s of $rm H_{2}CO(3_{0,3}-2_{0,2})$, $rm H_{2}CO(3_{2,1}-2_{2,0})$, and $rm SO(6_{5}-5_{4})$. We derive diameters for 10/20 sources in the range $D sim 10^{-3}$ to $sim 10^{-2}$ pc, thus placing them in the regime of hypercompact HII regions (HC HIIs). Their continuum-derived electron densities are in the range $n_{rm e} sim 10^4$ to $10^5$ cm$^{-3}$, lower than typically considered for HC HIIs. We combined the RL measurements and independently derived $n_{rm e}$, finding the same range of values but significant offsets for individual measurements between the two methods. We found that most of the sources in our sample are ionized by early B-type stars, and a comparison of $n_{rm e}$ vs $D$ shows that they follow the inverse relation previously derived for ultracompact (UC) and compact HIIs. When determined, the ionized-gas kinematics is always (7/7) indicative of outflow. Similarly, 5 and 3 out of the 8 HC HIIs still embedded in a compact core show evidence for expansion and infall motions in the molecular gas, respectively. We hypothesize that there could be two different types of $hypercompact$ ($D< 0.05$ pc) HII regions: those that essentially are smaller, expanding UC HIIs; and those that are also $hyperdense$ ($n_{rm e} > 10^6$ cm$^{-3}$), probably associated with O-type stars in a specific stage of their formation or early life.
Sulfur appears to be depleted by an order of magnitude or more from its elemental abundance in star-forming regions. In the last few years, numerous observations and experiments have been performed in order to to understand the reasons behind this de pletion without providing a satisfactory explanation of the sulfur chemistry towards high-mass star-forming cores. Several sulfur-bearing molecules have been observed in these regions, and yet none are abundant enough to make up the gas-phase deficit. Where, then, does this hidden sulfur reside? This paper represents a step forward in our understanding of the interactions among the various S-bearing species. We have incorporated recent experimental and theoretical data into a chemical model of a hot molecular core in order to see whether they give any indication of the identity of the sulfur sink in these dense regions. Despite our model producing reasonable agreement with both solid-phase and gas-phase abundances of many sulfur-bearing species, we find that the sulfur residue detected in recent experiments takes up only ~6 per cent of the available sulfur in our simulations, rather than dominating the sulfur budget.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا