ترغب بنشر مسار تعليمي؟ اضغط هنا

Dyadic Martingale Hardy-amalgam spaces: Embeddings and Duality

274   0   0.0 ( 0 )
 نشر من قبل Benoit Florent Sehba
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present in this paper some embeddings of various dyadic martingale Hardy-amalgam spaces $H^S_{p,q},,, H^s_{p,q},,,H^*_{p,q},,,mathcal{Q}_{p,q}$ and $mathcal{P}_{p,q}$ of the real line. In the same settings, we characterize the dual of $H^s_{p,q}$ for large $p$ and $q$. We also introduce a Garsia-type space $mathcal{G}_{p,q}$ and characterize its dual space.

قيم البحث

اقرأ أيضاً

In this paper, we introduce the notion of martingale Hardy-amalgam spaces: $ H^s_{p,q},,,mathcal{Q}_{p,q}$ and $mathcal{P}_{p,q}$. We present two atomic decompositions for these spaces. The dual space of $H^s_{p,q}$ for $0<ple qle 1$ is shown to be a Campanato-type space.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying the globally log-Holder continuous condition. In this article, the authors first introduce the variable weak Hardy space on $mathbb R^n$, $W!H^{p(cdot)}(mathbb R^n)$, via the radial grand maximal function, and then establish its radial or non-tangential maximal function characterizations. Moreover, the authors also obtain various equivalent characterizations of $W!H^{p(cdot)}(mathbb R^n)$, respectively, by means of atoms, molecules, the Lusin area function, the Littlewood-Paley $g$-function or $g_{lambda}^ast$-function. As an application, the authors establish the boundedness of convolutional $delta$-type and non-convolutional $gamma$-order Calderon-Zygmund operators from $H^{p(cdot)}(mathbb R^n)$ to $W!H^{p(cdot)}(mathbb R^n)$ including the critical case $p_-={n}/{(n+delta)}$, where $p_-:=mathopmathrm{ess,inf}_{xin rn}p(x).$
In this paper we consider the Hardy-Lorentz spaces $H^{p,q}(R^n)$, with $0<ple 1$, $0<qle infty$. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
Let $p(cdot): mathbb R^nto(0,infty)$ be a variable exponent function satisfying that there exists a constant $p_0in(0,p_-)$, where $p_-:=mathop{mathrm {ess,inf}}_{xin mathbb R^n}p(x)$, such that the Hardy-Littlewood maximal operator is bounded on the variable exponent Lebesgue space $L^{p(cdot)/p_0}(mathbb R^n)$. In this article, via investigating relations between boundary valued of harmonic functions on the upper half space and elements of variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$ introduced by E. Nakai and Y. Sawano and, independently, by D. Cruz-Uribe and L.-A. D. Wang, the authors characterize $H^{p(cdot)}(mathbb R^n)$ via the first order Riesz transforms when $p_-in (frac{n-1}n,infty)$, and via compositions of all the first order Riesz transforms when $p_-in(0,frac{n-1}n)$.
Let $L$ be a linear operator on $L^2(mathbb R^n)$ generating an analytic semigroup ${e^{-tL}}_{tge0}$ with kernels having pointwise upper bounds and $p(cdot): mathbb R^nto(0,1]$ be a variable exponent function satisfying the globally log-Holder conti nuous condition. In this article, the authors introduce the variable exponent Hardy space associated with the operator $L$, denoted by $H_L^{p(cdot)}(mathbb R^n)$, and the BMO-type space ${mathrm{BMO}}_{p(cdot),L}(mathbb R^n)$. By means of tent spaces with variable exponents, the authors then establish the molecular characterization of $H_L^{p(cdot)}(mathbb R^n)$ and a duality theorem between such a Hardy space and a BMO-type space. As applications, the authors study the boundedness of the fractional integral on these Hardy spaces and the coincidence between $H_L^{p(cdot)}(mathbb R^n)$ and the variable exponent Hardy spaces $H^{p(cdot)}(mathbb R^n)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا