ﻻ يوجد ملخص باللغة العربية
The explicit expressions for the average number of twisted photons radiated by a charged particle in an elliptical undulator in the classical approximation as well as in the approach accounting for the quantum recoil are obtained. It is shown that radiation emitted by a particle moving along an elliptical helix which evolves around the axis specifying the angular momentum of twisted photons obeys the selection rule: $m+n$ is an even number, where $m$ is a projection of the total angular momentum of a twisted photon and $n$ is the harmonic number of the undulator radiation. This selection rule is a generalization of the previously known selection rules for radiation of twisted photons by circular and planar undulators and it holds for both classical and quantum approaches. The class of trajectories of charged particles that produce the twisted photon radiation obeying the aforementioned selection rule is described.
Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray that are either seeded or start from noise (SASE). In addition, FELs that produce dif
A series of Silicon crystal undulator samples were produced based on the approach presented in PRL 90 (2003) 034801, with the periods of undulation from 0.1 mm to 1 mm, and the number of periods on the order of 10. The samples were characterized by X
Quantum communication has been successfully implemented in optical fibres and through free-space [1-3]. Fibre systems, though capable of fast key rates and low quantum bit error rates (QBERs), are impractical in communicating with destinations withou
We present a quantum random number generator (QRNG) based on the random outcomes inherent in projective measurements on a superposition of quantum states of light. Firstly, we use multiplexed holograms encoded on a spatial light modulator to spatiall
We analyze atomic photoexcitation into the discrete states by twisted photons, or photons carrying extra orbital angular momentum along their direction of propagation. From the angular momentum and parity considerations, we are able to relate twisted