ﻻ يوجد ملخص باللغة العربية
Artificial Intelligence (AI) software systems, such as Sentiment Analysis (SA) systems, typically learn from large amounts of data that may reflect human biases. Consequently, the machine learning model in such software systems may exhibit unintended demographic bias based on specific characteristics (e.g., gender, occupation, country-of-origin, etc.). Such biases manifest in an SA system when it predicts a different sentiment for similar texts that differ only in the characteristic of individuals described. Existing studies on revealing bias in SA systems rely on the production of sentences from a small set of short, predefined templates. To address this limitation, we present BisaFinder, an approach to discover biased predictions in SA systems via metamorphic testing. A key feature of BisaFinder is the automatic curation of suitable templates based on the pieces of text from a large corpus, using various Natural Language Processing (NLP) techniques to identify words that describe demographic characteristics. Next, BisaFinder instantiates new text from these templates by filling in placeholders with words associated with a class of a characteristic (e.g., gender-specific words such as female names, she, her). These texts are used to tease out bias in an SA system. BisaFinder identifies a bias-uncovering test case when it detects that the SA system exhibits demographic bias for a pair of texts, i.e., it predicts a different sentiment for texts that differ only in words associated with a different class (e.g., male vs. female) of a target characteristic (e.g., gender). Our empirical evaluation showed that BisaFinder can effectively create a large number of realistic and diverse test cases that uncover various biases in an SA system with a high true positive rate of up to 95.8%.
Test generation at the graphical user interface (GUI) level has proven to be an effective method to reveal faults. When doing so, a test generator has to repeatably decide what action to execute given the current state of the system under test (SUT).
Industrial cyber-physical systems require complex distributed software to orchestrate many heterogeneous mechatronic components and control multiple physical processes. Industrial automation software is typically developed in a model-driven fashion w
Software testing is often hindered where it is impossible or impractical to determine the correctness of the behaviour or output of the software under test (SUT), a situation known as the oracle problem. An example of an area facing the oracle proble
With the ever-increasing use of web APIs in modern-day applications, it is becoming more important to test the system as a whole. In the last decade, tools and approaches have been proposed to automate the creation of system-level test cases for thes
App reviews deliver user opinions and emerging issues (e.g., new bugs) about the app releases. Due to the dynamic nature of app reviews, topics and sentiment of the reviews would change along with app relea