ترغب بنشر مسار تعليمي؟ اضغط هنا

First Star Formation in the Presence of Primordial Magnetic Fields

62   0   0.0 ( 0 )
 نشر من قبل Daegene Koh
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has been recently claimed that primordial magnetic fields could relieve the cosmological Hubble tension. We consider the impact of such fields on the formation of the first cosmological objects, mini-halos forming stars, for present-day field strengths in the range of $2times 10^{-12}$ - $2times 10^{-10}$ G. These values correspond to initial ratios of Alven velocity to the speed of sound of $v_a/c_sapprox 0.03 - 3$. We find that when $v_a/c_sll 1$, the effects are modest. However, when $v_asim c_s$, the starting time of the gravitational collapse is delayed and the duration extended as much as by $Delta$z = 2.5 in redshift. When $v_a > c_s$, the collapse is completely suppressed and the mini-halos continue to grow and are unlikely to collapse until reaching the atomic cooling limit. Employing current observational limits on primordial magnetic fields we conclude that inflationary produced primordial magnetic fields could have a significant impact on first star formation, whereas post-inflationary produced fields do not.

قيم البحث

اقرأ أيضاً

We study the evolution of axions interacting with primordial magnetic fields (PMFs) starting just from the QCD phase transition in the expanding universe. This interaction is owing to the Primakoff effect. Adopting the zero mode approximation for axi ons, we derive the system of equations for axions and magnetic fields, where the expansion of the universe and the spectra of magnetic fields are accounted for exactly. We find that the contribution of the Primakoff effect to the dynamics of axions and magnetic fields is rather weak. It confirms some previous estimates leading to analogous conclusions, when accounting here for the Hubble expansion both for an uniform axion field and non-uniform PMFs using Fourier spectra for their energy and helicity densities. We solve the corresponding system of the evolution equations and find that the axion zero mode, when evolving during radiation era, has its amplitude at the level sufficient for that axion to be a good candidate for the cold dark matter.
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, ma gnetic fields seem to be present in the universe on all scales, which rises the possibility that they could also permeate the early universe; second, the recent emergence of inflationary models where the inflaton is not assumed to be isolated but instead it is taken as an interacting field, even during the inflationary expansion. The effects of magnetic fields are included resorting to Schwinger proper time method.
Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on t he abundance of primordial black holes (PBHs). The anisotropic stress of the PMFs can act as a source of the super-horizon curvature perturbation in the early universe. If the amplitude of PMFs is sufficiently large, the resultant density perturbation also has a large amplitude, and thereby, the PBH abundance is enhanced. Since the anisotropic stress of the PMFs is consist of the square of the magnetic fields, the statistics of the density perturbation follows the non-Gaussian distribution. Assuming Gaussian distributions and delta-function type power spectrum for PMFs, based on a Monte-Carlo method, we obtain an approximate probability density function of the density perturbation, and it is an important piece to relate the amplitude of PMFs with the abundance of PBHs. Finally, we place the strongest constraint on the amplitude of PMFs as a few hundred nano-Gauss on $10^{2};{rm Mpc}^{-1} leq kleq 10^{18};{rm Mpc}^{-1}$ where the typical cosmological observations never reach.
We study the effects of WIMP dark matter (DM) annihilations on the thermal and chemical evolution of the gaseous clouds where the first generation of stars in the Universe is formed. We follow the collapse of the gas inside a typical halo virializing at very high redshift, from well before virialization until a stage where the heating from DM annihilations exceeds the gas cooling rate. The DM energy input is estimated by inserting the energy released by DM annihilations (as predicted by an adiabatic contraction of the original DM profile) in a spherically symmetric radiative transfer scheme. In addition to the heating effects of the energy absorbed, we include its feedback upon the chemical properties of the gas, which is critical to determine the cooling rate in the halo, and hence the fragmentation scale and Jeans mass of the first stars. We find that DM annihilation does alter the free electron and especially the H2 fraction when the gas density is n>~ 10^4 cm^-3, for our fiducial parameter values. However, even if the change in the H2 abundance and the cooling efficiency of the gas is large (sometimes exceeding a factor 100), the effects on the temperature of the collapsing gas are far smaller (a reduction by a factor <~1.5), since the gas cooling rate depends very strongly on temperature: then, the fragmentation mass scale is reduced only slightly, hinting towards no dramatic change in the initial mass function of the first stars.
We present the first results from SPHINX-MHD, a suite of cosmological radiation-magnetohydrodynamics simulations designed to study the impact of primordial magnetic fields (PMFs) on galaxy formation and the evolution of the intergalactic medium durin g the epoch of reionization. The simulations are among the first to employ multi-frequency, on-the-fly radiation transfer and constrained transport ideal MHD in a cosmological context to simultaneously model the inhomogeneous process of reionization as well as the growth of PMFs. We run a series of $(5,text{cMpc})^3$ cosmological volumes, varying both the strength of the seed magnetic field ($B_0$) and its spectral index ($n_B$). We find that PMFs that have $n_B > -0.562log_{10}left(frac{B_0}{1{rm n}G}right) - 3.35$ produce electron optical depths ($tau_e$) that are inconsistent with CMB constraints due to the unrealistically early collapse of low-mass dwarf galaxies. For $n_Bgeq-2.9$, our constraints are considerably tighter than the $sim{rm n}G$ constraints from Planck. PMFs that do not satisfy our constraints have little impact on the reionization history or the shape of the UV luminosity function. Likewise, detecting changes in the Lya forest due to PMFs will be challenging because photoionisation and photoheating efficiently smooth the density field. However, we find that the first absorption feature in the global 21cm signal is a sensitive indicator of the properties of the PMFs, even for those that satisfy our $tau_e$ constraint. Furthermore, strong PMFs can marginally increase the escape of LyC photons by up to 25% and shrink the effective radii of galaxies by $sim44%$ which could increase the completeness fraction of galaxy surveys. Finally, our simulations show that surveys with a magnitude limit of ${rm M_{UV,1500}=-13}$ can probe the sources that provide the majority of photons for reionization out to $z=12$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا