ﻻ يوجد ملخص باللغة العربية
It has been recently claimed that primordial magnetic fields could relieve the cosmological Hubble tension. We consider the impact of such fields on the formation of the first cosmological objects, mini-halos forming stars, for present-day field strengths in the range of $2times 10^{-12}$ - $2times 10^{-10}$ G. These values correspond to initial ratios of Alven velocity to the speed of sound of $v_a/c_sapprox 0.03 - 3$. We find that when $v_a/c_sll 1$, the effects are modest. However, when $v_asim c_s$, the starting time of the gravitational collapse is delayed and the duration extended as much as by $Delta$z = 2.5 in redshift. When $v_a > c_s$, the collapse is completely suppressed and the mini-halos continue to grow and are unlikely to collapse until reaching the atomic cooling limit. Employing current observational limits on primordial magnetic fields we conclude that inflationary produced primordial magnetic fields could have a significant impact on first star formation, whereas post-inflationary produced fields do not.
We study the evolution of axions interacting with primordial magnetic fields (PMFs) starting just from the QCD phase transition in the expanding universe. This interaction is owing to the Primakoff effect. Adopting the zero mode approximation for axi
We present preliminary results on the possible effects that primordial magnetic fields can have for a warm inflation scenario, based on global supersymmetry, with a new-inflation-type potential. This work is motivated by two considerations: first, ma
Primordial magnetic field (PMF) is one of the feasible candidates to explain observed large-scale magnetic fields, for example, intergalactic magnetic fields. We present a new mechanism that brings us information about PMFs on small scales based on t
We study the effects of WIMP dark matter (DM) annihilations on the thermal and chemical evolution of the gaseous clouds where the first generation of stars in the Universe is formed. We follow the collapse of the gas inside a typical halo virializing
We present the first results from SPHINX-MHD, a suite of cosmological radiation-magnetohydrodynamics simulations designed to study the impact of primordial magnetic fields (PMFs) on galaxy formation and the evolution of the intergalactic medium durin