ﻻ يوجد ملخص باللغة العربية
The reweighting procedure that using Bayesian statistics incorporates the information contained in a new data set, without the need of re-fitting, is applied to the quark Sivers function extracted from Semi-Inclusive Deep Inelastic Scattering (SIDIS) data. We exploit the recently published single spin asymmetry data for the inclusive jet production in polarized $pp$ collisions from the STAR Collaboration at RHIC, which cover a much wider $x$ region compared to SIDIS measurements. The reweighting method is extended to the case of asymmetric errors and the results show a remarkable improvement of the knowledge of the quark Sivers function.
The Bayesian reweighting procedure is applied for the first time to a TMD distribution, the quark Sivers function extracted from SIDIS data. By exploiting the recent published single spin asymmetry data for the inclusive jet production in $p^uparrow
We perform a global fit of the available polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), polarized pion-induced Drell-Yan (DY) and $W^pm/Z$ boson production data at N$^3$LO and NNLO accuracy of the Transverse Momentum Dependent (TMD) evol
We perform the global analysis of polarized Semi-Inclusive Deep Inelastic Scattering (SIDIS), pion-induced polarized Drell-Yan (DY), and $W^pm/Z$ boson production data and extract the Sivers function for $u$, $d$, $s$ and for sea-quarks. We use the f
Recent data on the transverse single spin asymmetry $A_N$ measured by the STAR Collaboration for $p^uparrow , p to W^pm/Z^0 , X$ reactions at RHIC allow the first investigation of the Sivers function in Drell-Yan processes and of its expected sign ch
It is commonly believed that the Sivers function has uniquely to do with processes involving a transversely polarized nucleon. In this paper we show that it is not necessarily the case. We demonstrate that exclusive pion production in $un$polarized e