ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic correlation in nearly free electron metals with beyond-DFT methods

108   0   0.0 ( 0 )
 نشر من قبل Subhasish Mandal
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For more than three decades, nearly free electron elemental metals have been a topic of debate because the computed bandwidths are significantly wider in the local density approximation to density-functional theory (DFT) than indicated by angle-resolved photoemission experiments. Here, we systematically investigate this using first-principles calculations for alkali and alkaline-earth metals using DFT and various beyond-DFT methods such as meta-GGA, G$_0$W$_0$, B3LYP, and DFT+eDMFT. We find that the static non-local exchange and correlation, as partly included in the B3LYP hybrid functional, significantly increase the bandwidths even compared to LDA, while the G$_0$W$_0$ bands are only slightly narrower than in LDA. The agreement with the ARPES is best when the local approximation to the self-energy is used in the DFT+eDMFT method. We infer that even moderately correlated systems with partially occupied s-orbitals, which were assumed to approximate the uniform electron gas, are very well described in terms of short-range dynamical correlations that are only local to an atom.



قيم البحث

اقرأ أيضاً

Small-wavevector excitations in Coulomb-interacting systems can be decomposed into the high-energy collective longitudinal plasmon and the low-energy single-electron excitations. At the critical wavevector and corresponding frequency where the plasmo n branch merges with the single-electron excitation region, the collective energy of the plasmon dissipates into single electron-hole excitations. The jellium model provides a reasonable description of the electron-energy-loss spectrum (EELS) of metals close to the free-electron limit. The random phase approximation (RPA) is exact in the high-density limit but can capture the plasmonic dispersion reasonably even for densities with rs > 1. RPA and all beyond-RPA methods investigated here, result in a wrong infinite plasmon lifetime for a wavevector smaller than the critical one where the plasmon dispersion curve runs into particle-hole excitations. Exchange-correlation kernel corrections to RPA modify the plasmon dispersion curve. There is however a large difference in the construction and form of the kernels investigated earlier. Our current work introduces recent model exchange-only and exchange-correlation kernels and discusses the relevance of some exact constraints in the construction of the kernel. We show that, because the plasmon dispersion samples a range of wavevectors smaller than the range sampled by the correlation energy, different kernels can make a strong difference for the correlation energy and a weak difference for the plasmon dispersion. This work completes our understanding about the plasmon dispersion in realistic metals, such as Cs, where a negative plasmon dispersion has been observed. We find only positive plasmon dispersion in jellium at the density for Cs.
111 - I. Di Marco , J. Minar , S. Chadov 2008
We present an accurate implementation of total energy calculations into the local density approximation plus dynamical mean-field theory (LDA+DMFT) method. The electronic structure problem is solved through the full potential linear Muffin-Tin Orbita l (FP-LMTO) and Korringa-Kohn-Rostoker (FP-KKR) methods with a perturbative solver for the effective impurity suitable for moderately correlated systems. We have tested the method in detail for the case of Ni and investigated the sensitivity of the results to the computational scheme and to the complete self-consistency. It is demonstrated that the LDA+DMFT method can resolve a long-standing controversy between the LDA/GGA density functional approach and experiment for equilibrium lattice constant and bulk modulus of Mn.
154 - Yoshiki Imai , Tetsuro Saso 2009
Based on the recently proposed band model, the electronic specific heat of moderately heavy electron compound YbAl$_3$ are investigated. The band term of the Hamiltonian consists of three parts; conduction electrons described by the nearly free elect ron method, localized 4f electrons of Yb ions and the hybridization term between these electrons. Extracting several bands near the Fermi level, we reconstruct the low-energy effective Hamiltonian in order to consider the correlation effect, which is studied by using the self-consistent second order perturbation theory combined with local approximation. The temperature dependence of the specific heat $c_{rm v}(T)$ is calculated as a function of temperature $T$ from the numerical derivative of the internal energy. Sommerfeld coefficient $gamma$ is also calculated from the direct formula. The overall structure of $c_{rm v}(T)/T$ is in quantitative agreement with the experimental results, which have the characteristic two-peak structures. They originate from the correlation effect and the structure of the non-interacting density of states, respectively. We show that our effective Hamiltonian yielding the realistic band structure may describe quantitatively heavy electron compounds with conduction bands composed of s- or p- electrons.
To clarify the nature of correlations in Hund metals and its relationship with Mott physics we analyze the electronic correlations in multiorbital systems as a function of intraorbital interaction U, Hunds coupling JH and electronic filling n. We sho w that the main process behind the enhancement of correlations in Hund metals is the suppression of the double-occupancy of a given orbital, as it also happens in the Mott-insulator at half-filling. However, contrary to what happens in Mott correlated states the reduction of the quasiparticle weight Z with JH can happen on spite of increasing charge fluctuations. Therefore, in Hund metals the quasiparticle weight and the mass enhancement are not good measurements of the charge localization. Using simple energetic arguments we explain why the spin polarization induced by Hunds coupling produces orbital decoupling. We also discuss how the behavior at moderate interactions, with correlations controlled by the atomic spin polarization, changes at large $U$ and $J_H$ due to the proximity to a Mott insulating state.
We use x-ray spectroscopy at Ir L$_3$/L$_2$ absorption edge to study powder samples of the intercalated honeycomb magnet Ag$_3$LiIr$_2$O$_6$. Based on x-ray absorption and resonant inelastic x-ray scattering measurements, and exact diagonalization ca lculations including next-neighbour Ir-Ir electron hoping integrals, we argue that the intercalation of Ag atoms results in a nearly itinerant electronic structure with enhanced Ir-O hybridization. As a result of the departure from the local relativistic $j_{rm eff}! = !1/2$ state, we find that the relative orbital contribution to the magnetic moment is increased, and the magnetization density is spatially extended and asymmetric. Our results confirm the importance of metal - ligand hybridazation in the magnetism of transition metal oxides and provide empirical guidance for understanding the collective magnetism in intercalated honeycomb iridates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا