ﻻ يوجد ملخص باللغة العربية
This paper is concerned with a class of open quantum systems whose dynamic variables have an algebraic structure, similar to that of the Pauli matrices pertaining to finite-level systems. The system interacts with external bosonic fields, and its Hamiltonian and coupling operators depend linearly on the system variables. This results in a Hudson-Parthasarathy quantum stochastic differential equation (QSDE) whose drift and dispersion terms are affine and linear functions of the system variables. The quasilinearity of the QSDE leads to tractable dynamics of mean values and higher-order multi-point moments of the system variables driven by vacuum input fields. This allows for the closed-form computation of the quasi-characteristic function of the invariant quantum state of the system and infinite-horizon asymptotic growth rates for a class of cost functionals. The tractability of the moment dynamics is also used for mean square optimal Luenberger observer design in a measurement-based filtering problem for a quasilinear quantum plant, which leads to a Kalman-like quantum filter.
This paper is concerned with multimode open quantum harmonic oscillators and quadratic-exponential functionals (QEFs) as quantum risk-sensitive performance criteria. Such systems are described by linear quantum stochastic differential equations drive
This paper is concerned with quadratic-exponential functionals (QEFs) as risk-sensitive performance criteria for linear quantum stochastic systems driven by multichannel bosonic fields. Such costs impose an exponential penalty on quadratic functions
This brief article gives an overview of quantum mechanics as a {em quantum probability theory}. It begins with a review of the basic operator-algebraic elements that connect probability theory with quantum probability theory. Then quantum stochastic
This paper is concerned with a risk-sensitive optimal control problem for a feedback connection of a quantum plant with a measurement-based classical controller. The plant is a multimode open quantum harmonic oscillator driven by a multichannel quant
Given a stochastic dynamical system modelled via stochastic differential equations (SDEs), we evaluate the safety of the system through characterisations of its exit time moments. We lift the (possibly nonlinear) dynamics into the space of the occupa