ترغب بنشر مسار تعليمي؟ اضغط هنا

Speed limits for radiation driven SMBH winds

195   0   0.0 ( 0 )
 نشر من قبل Alfredo Luminari
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ultra Fast Outflows (UFOs) are an established feature in X-ray spectra of AGNs. According to the standard picture, they are launched at accretion disc scales with relativistic velocities, up to 0.3-0.4 c. Their high kinetic power is enough to induce an efficient feedback on galactic-scale, possibly contributing to the co-evolution between the central supermassive black hole (SMBH) and the host galaxy. It is therefore of paramount importance to fully understand the UFO physics, in particular the forces driving their acceleration and the relation with the accretion flow they originate from. In this paper we investigate the impact of special relativity effects on the radiative pressure exerted onto the outflow. The radiation received by the wind decreases for increasing outflow velocity v, implying that the standard Eddington limit argument has to be corrected according to v. Due to the limited ability of the radiation to counteract the SMBH gravity, we expect to find lower typical velocities with respect to the non-relativistic scenario. We integrate the relativistic-corrected outflow equation of motion for a realistic set of starting conditions. We concentrate on UFO typical values of ionisation, column density and launching radius. We explore a one-dimensional, spherical geometry and a 3D setting with a rotating thin accretion disc. We find that the inclusion of relativistic effects leads to sizeable differences in the wind dynamics and that v is reduced up to 50% with respect to the non-relativistic treatment. We compare our results with a sample of UFO from the literature, and we find that the relativistic-corrected velocities are systematically lower than the reported ones, indicating the need for an additional mechanism, such as magnetic driving, to explain the highest velocity components. These conclusions, derived for AGN winds, have a general applicability.



قيم البحث

اقرأ أيضاً

We study temporal variability of radiation driven winds using one dimensional, time dependent simulations and an extension of the classic theory of line driven winds developed by Castor Abbott and Klein. We drive the wind with a sinusoidally varying radiation field and find that after a relaxation time, determined by the propagation time for waves to move out of the acceleration zone of the wind, the solution settles into a periodic state. Winds driven at frequencies much higher than the dynamical frequency behave like stationary winds with time averaged radiation flux whereas winds driven at much lower frequencies oscillate between the high and low flux stationary states. Most interestingly, we find a resonance frequency near the dynamical frequency which results in velocity being enhanced or suppressed by a factor comparable to the amplitude of the flux variation. Whether the velocity is enhanced or suppressed depends on the relative phase between the radiation and the dynamical variables. These results suggest that a time-varying radiation source can induce density and velocity perturbations in the acceleration zones of line driven winds.
163 - Rong-Feng Shen 2016
Recent observation of some luminous transient sources with low color temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiatio n pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass loss rate regimes ($dot{M} > L_{rm Edd,}/c^2$). In the large total luminosity regime the solution resembles an adiabatic wind solution. Both the radiative luminosity, $L$, and the kinetic luminosity, $L_k$, are super-Eddington with $L < L_k$ and $L propto L_k^{1/3}$. In the lower total luminosity regime most of the energy is carried out by the radiation with $L_k < L approx L_{rm Edd,}$. In a third, low mass loss regime ($dot{M} < L_{rm Edd,}/c^2$), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind, therefore they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.
We point out that the commonly assumed condition for galactic outflows, that supernovae (SNe) heating is efficient in the central regions of starburst galaxies, suffers from invalid assumptions. We show that a large filling factor of hot ($ge 10^6$ K ) gas is difficult to achieve through SNe heating, irrespective of the initial gas temperature and density, and of its being uniform or clumpy. We instead suggest that correlated supernovae from OB associations in molecular clouds in the central region can drive powerful outflows if the molecular surface density is $> 10^3$ M$_{odot}$ pc$^{-2}$.
We study line driven winds for models with different radial intensity profiles: standard Shakura-Sunyaev radiating thin discs, uniform intensity discs and truncated discs where driving radiation is cutoff at some radius. We find that global outflow p roperties depend primarily on the total system luminosity but truncated discs can launch outflows with $sim 2$ times higher mass flux and $sim 50%$ faster outflow velocity than non-truncated discs with the same total radiation flux. Streamlines interior to the truncation radius are largely unaffected and carry the same momentum flux as non-truncated models whereas those far outside the truncation radius effectively carry no outflow because the local radiation force is too weak to lift matter vertically away from the disc. Near the truncation radius the flow becomes more radial, due to the loss of pressure/radiation support from gas/radiation at larger radii. These models suggest that line driven outflows are sensitive to the geometry of the radiation field driving them, motivating the need for self-consistent disc/wind models.
In 2019, the Event Horizon Telescope Collaboration (EHTC) has published the first image of a supermassive black hole (SMBH) obtained via the Very Large Baseline Interferometry (VLBI) technique. In the future, it is expected that additional and more s ensitive VLBI observations will be pursued for other nearby Active Galactic Nuclei (AGN), and it is therefore important to understand which possible features can be expected in such images. In this paper, we post-process General Relativistic Magneto-Hydrodynamical (GR-MHD) simulations which include resistivity, thus providing a self-consistent jet formation model, including resistive mass loading of a wind launched from a disc in Keplerian rotation. The ray-tracing is done using the General Relativistic Ray-Tracing code GRTRANS assuming synchrotron emission. We study the appearance of the black hole environment including the accretion disc, winds and jets under a large range of condition, varying black hole mass, accretion rate, spin, inclination angle, disc parameters and observed frequency. When we adopt M87-like parameters, we show that we can reproduce a ring-like feature (similar as observed by the EHT) for some of our simulations. The latter suggests that such Keplerian disc models thus could be consistent with the observed results. Depending on their masses, accretion rates, spin and the sensitivity of the observation, we note that other SMBHs may show additional features like winds and jets in the observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا