ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum chaos driven by long-range waveguide-mediated interactions

267   0   0.0 ( 0 )
 نشر من قبل Alexander N. Poddubny
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide. Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space. This indicates the Bethe ansatz breakdown and the onset of quantum chaos, in stark contrast to the conventional integrable problem of two interacting bosons in a box. We identify the long-range waveguide-mediated coupling between the atoms as the key ingredient of chaos and nonintegrability. Our results provide new insights in the interplay between order, chaos and localization in many-body quantum systems and can be tested in state-of-the-art setups of waveguide quantum electrodynamics.

قيم البحث

اقرأ أيضاً

The generating functional of a self-interacting scalar quantum field theory (QFT), which contains all the relevant information about real-time dynamics and scattering experiments, can be mapped onto a collection of multipartite-entangled two-level se nsors via an interferometric protocol that exploits a specific set of source functions. Although one typically focuses on impulsive delta-like sources, as these give direct access to $n$-point Feynman propagators, we show in this work that using always-on harmonic sources can simplify substantially the sensing protocol. In a specific regime, the effective real-time dynamics of the quantum sensors can be described by a quantum Ising model with long-range couplings, the range and strength of which contains all the relevant information about the renormalisation of the QFT, which can now be extracted in the absence of multi-partite entanglement. We present a detailed analysis of how this sensing protocol can be relevant to characterise the long-wavelength QFT that describes quantised sound waves of trapped-ion crystals in the vicinity of a structural phase transition, opening a new route to characterise the associated renormalisation of sound.
We consider a two-dimensional extension of the 1D waveguide quantum electrodynamics and investigate the nature of linear excitations in two-dimensional arrays of qubits coupled to networks of chiral waveguides. We show that the combined effects of ch irality and long-range photon mediated qubit-qubit interactions lead to the emergence of the two-dimensional flat bands in the polaritonic spectrum, corresponding to slow strongly correlated light.
We map the infinite-range coupled quantum kicked rotors over an infinite-range coupled interacting bosonic model. In this way we can apply exact diagonalization up to quite large system sizes and confirm that the system tends to ergodicity in the lar ge-size limit. In the thermodynamic limit the system is described by a set of coupled Gross-Pitaevskij equations equivalent to an effective nonlinear single-rotor Hamiltonian. These equations give rise to a power-law increase in time of the energy with exponent $gammasim 2/3$ in a wide range of parameters. We explain this finding by means of a master-equation approach based on the noisy behaviour of the effective nonlinear single-rotor Hamiltonian and on the Anderson localization of the single-rotor Floquet states. Furthermore, we study chaos by means of the largest Lyapunov exponent and find that it decreases towards zero for portions of the phase space with increasing momentum. Finally, we show that some stroboscopic Floquet integrals of motion of the noninteracting dynamics deviate from their initial values over a time scale related to the interaction strength according to the Nekhoroshev theorem.
81 - Jing Yang , Shengshi Pang , 2021
With optimal control theory, we compute the maximum possible quantum Fisher information about the interaction parameter for a Kitaev chain with tunable long-range interactions in the many-particle Hilbert space. We consider a wide class of decay laws for the long-range interaction and develop rigorous asymptotic analysis for the scaling of the quantum Fisher information with respect to the number of lattice sites. In quantum metrology nonlinear many-body interactions can enhance the precision of quantum parameter estimation to surpass the Heisenberg scaling, which is quadratic in the number of lattice sites. Here for the estimation of the long-range interaction strength, we observe the Heisenberg to super-Heisenberg transition in such a $linear$ model, related to the slow decaying long-range correlations in the model. Finally, we show that quantum control is able to improve the prefactor rather than the scaling exponent of the quantum Fisher information. This is in contrast with the case where quantum control has been shown to improve the scaling of quantum Fisher information with the probe time. Our results clarify the role of quantum controls and long-range interactions in many-body quantum metrology.
Photon-mediated interactions between quantum systems are essential for realizing quantum networks and scalable quantum information processing. We demonstrate such interactions between pairs of silicon-vacancy (SiV) color centers strongly coupled to a diamond nanophotonic cavity. When the optical transitions of the two color centers are tuned into resonance, the coupling to the common cavity mode results in a coherent interaction between them, leading to spectrally-resolved superradiant and subradiant states. We use the electronic spin degrees of freedom of the SiV centers to control these optically-mediated interactions. Our experiments pave the way for implementation of cavity-mediated quantum gates between spin qubits and for realization of scalable quantum network nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا