ﻻ يوجد ملخص باللغة العربية
Merging supermassive black hole binaries produce low-frequency gravitational waves, which pulsar timing experiments are searching for. Much of the current theory is developed within the plane-wave formalism, and here we develop the more general Fresnel formalism. We show that Fresnel corrections to gravitational wave timing residual models allow novel measurements to be made, such as direct measurements of the source distance from the timing residual phase and frequency, as well as direct measurements of chirp mass from a monochromatic source. Probing the Fresnel corrections in these models will require future pulsar timing arrays with more distant pulsars across our Galaxy (ideally at the distance of the Magellanic Clouds), timed with precisions less than $100$ ns, with distance uncertainties reduced to the order of the gravitational wavelength. We find that sources with chirp mass of order $10^9 mathrm{M}_odot$ and orbital frequency $omega_0 > 10$ nHz are good candidates for probing Fresnel corrections. With these conditions met, the measured source distance uncertainty can be made less than 10 per cent of the distance to the source for sources out to $sim 100$ Mpc, source sky localization can be reduced to sub-arcminute precision, and source volume localization can be made to less than $1 text{Mpc}^3$ for sources out to 1-Gpc distances.
Abbreviated: We investigate the potential of detecting the gravitational wave from individual binary black hole systems using pulsar timing arrays (PTAs) and calculate the accuracy for determining the GW properties. This is done in a consistent ana
Pulsar timing arrays act to detect gravitational waves by observing the small, correlated effect the waves have on pulse arrival times at Earth. This effect has conventionally been evaluated assuming the gravitational wave phasefronts are planar acro
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present
The NANOGrav Collaboration reported strong Bayesian evidence for a common-spectrum stochastic process in its 12.5-yr pulsar timing array dataset, with median characteristic strain amplitude at periods of a year of $A_{rm yr} = 1.92^{+0.75}_{-0.55} ti
Resolvable Supermassive Black Hole Binaries are promising sources for Pulsar Timing Array based gravitational wave searches. Search algorithms for such targets must contend with the large number of so-called pulsar phase parameters in the joint log-l