ﻻ يوجد ملخص باللغة العربية
In the near future, the neutrinoless double-beta ($0 ubetabeta$) decay experiments will hopefully reach the sensitivity of a few ${rm meV}$ to the effective neutrino mass $|m^{}_{betabeta}|$. In this paper, we tentatively examine the sensitivity of future $0 ubetabeta$-decay experiments to neutrino masses and Majorana CP phases by following the Bayesian statistical approach. Provided experimental setups corresponding to the sensitivity of $|m^{}_{betabeta}| simeq 1~{rm meV}$, the null observation of $0 ubetabeta$ decays in the case of normal neutrino mass ordering leads to a very competitive bound on the lightest neutrino mass $m^{}_1$. Namely, the $95%$ credible interval turns out to be $1.6~{rm meV} lesssim m^{}_1 lesssim 7.3~{rm meV}$ or $0.3~{rm meV} lesssim m^{}_1 lesssim 5.6~{rm meV}$ when the uniform prior on $m^{}_1/{rm eV}$ or on $log^{}_{10}(m^{}_1/{rm eV})$ is adopted. Moreover, one of two Majorana CP phases is strictly constrained, i.e., $140^circ lesssim rho lesssim 220^circ$ for both priors of $m^{}_1$. In contrast, if a relatively worse sensitivity of $|m^{}_{betabeta}| simeq 10~{rm meV}$ is assumed, the constraint becomes accordingly $0.6~{rm meV} lesssim m^{}_1 lesssim 26~{rm meV}$ or $0 lesssim m^{}_1 lesssim 6.1~{rm meV}$, while two Majorana CP phases will be essentially unconstrained. In the same statistical framework, the prospects for the determination of neutrino mass ordering and the discrimination between Majorana and Dirac nature of massive neutrinos in the $0 ubetabeta$-decay experiments are also discussed. Given the experimental sensitivity of $|m^{}_{betabeta}| simeq 10~{rm meV}$ (or $1~{rm meV}$), the strength of evidence to exclude the Majorana nature under the null observation of $0 ubetabeta$ decays is found to be inconclusive (or strong), no matter which of two priors on $m^{}_1$ is taken.
Past and current direct neutrino mass experiments set limits on the so-called effective neutrino mass, which is an incoherent sum of neutrino masses and lepton mixing matrix elements. The electron energy spectrum which neglects the relativistic and n
We propose a new strategy for detecting the CP-violating phases and the effective mass of muon Majorana neutrinos by measuring observables associated with neutrino-antineutrino oscillations in $pi^{pm}$ decays. Within the generic framework of quantum
Bayesian modeling techniques enable sensitivity analyses that incorporate detailed expectations regarding future experiments. A model-based approach also allows one to evaluate inferences and predicted outcomes, by calibrating (or measuring) the cons
With large active volume sizes dark matter direct detection experiments are sensitive to solar neutrino fluxes. Nuclear recoil signals are induced by $^8$B neutrinos, while electron recoils are mainly generated by the pp flux. Measurements of both pr
We consider the possibility of several different mechanisms contributing to the $betabeta$-decay amplitude in the general case of CP nonconservation: light Majorana neutrino exchange, heavy left-handed (LH) and heavy right-handed (RH) Majorana neutri