ترغب بنشر مسار تعليمي؟ اضغط هنا

The FragmentatiOn Of Target Experiment (FOOT) and its DAQ system

97   0   0.0 ( 0 )
 نشر من قبل Silvia Biondi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The FragmentatiOn Of Target (FOOT) experiment aims to provide precise nuclear cross-section measurements for two different fields: hadrontherapy and radio-protection in space. The main reason is the important role the nuclear fragmentation process plays in both fields, where the health risks caused by radiation are very similar and mainly attributable to the fragmentation process. The FOOT experiment has been developed in such a way that the experimental setup is easily movable and fits the space limitations of the experimental and treatment rooms available in hadrontherapy treatment centers, where most of the data takings are carried out. The Trigger and Data Acquisition system needs to follow the same criteria and it should work in different laboratories and in different conditions. It has been designed to acquire the largest sample size with high accuracy in a controlled and online-monitored environment. The data collected are processed in real-time for quality assessment and are available to the DAQ crew and detector experts during data taking.

قيم البحث

اقرأ أيضاً

A new $mu$TCA DAQ system was introduced in CANDLES experiment with SpaceWire-to-GigabitEthernet (SpaceWire-GigabitEthernet) network for data readout and Flash Analog-to-Digital Converters (FADCs). With SpaceWire-GigabitEthernet, we can construct a fl exible DAQ network with multi-path access to FADCs by using off-the-shelf computers. FADCs are equipped 8 event buffers, which act as de-randomizer to detect sequential decays from the background. SpaceWire-GigabitEthernet has high latency (about 100 $mu$sec) due to long turnaround time, while GigabitEthernet has high throughput. To reduce dead-time, we developed the DAQ system with 4 crate-parallel (modules in crates are read in parallel) reading threads. As a result, the readout time is reduced by 4 times: 40 msec down to 10 msec. With improved performance, it is expected to achieve higher background suppression for CANDLES experiment. Moreover, for energy calibration, event-parallel reading process (events are read in parallel) is also introduced to reduce measurement time. With 2 event-parallel reading processes, the data rate is increased 2 times.
The muon campus program at Fermilab includes the Mu2e experiment that will search for a charged-lepton flavor violating processes where a negative muon converts into an electron in the field of an aluminum nucleus, improving by four orders of magnitu de the search sensitivity reached so far. Mu2es Trigger and Data Acquisition System (TDAQ) uses otsdaq as its solution. Developed at Fermilab, otsdaq uses the artdaq DAQ framework and art analysis framework, under the-hood, for event transfer, filtering, and processing. otsdaq is an online DAQ software suite with a focus on flexibility and scalability, while providing a multi-user, web-based, interface accessible through the Chrome or Firefox web browser. The detector Read Out Controller (ROC), from the tracker and calorimeter, stream out zero-suppressed data continuously to the Data Transfer Controller (DTC). Data is then read over the PCIe bus to a software filter algorithm that selects events which are finally combined with the data flux that comes froma Cosmic Ray Ve to System (CRV). A Detector Control System (DCS) for monitoring, controlling, alarming, and archiving has been developed using the Experimental Physics and Industrial Control System (EPICS) Open Source Platform. The DCS System has also been itegrated into otsdaq. The installation of the TDAQ and the DCS systems in the Mu2e building is planned for 2021-2022, and a prototype has been built at Fermilabs Feynman Computing Center. We report here on the developments and achievements of the integration of Mu2es DCS system into the online otsdaq software.
74 - D. van Eijk 2018
CHIPS (CHerenkov detectors In mine PitS ) is a novel neutrino detector concept, aimed at building megaton water-Cherenkov neutrino detectors in a flexible and cheap way, while yielding science results comparable and contributing to conventional long- baseline neutrino experiments. In the summer of 2018, a 5 kiloton proof-of-principle detector will be installed in a disused water-filled mine pit located in the NuMI neutrino beamline path in Minnesota, USA. The submerged cylindrical detector volume is 25 meters in diameter and 10 meter tall and is surrounded by light-tight liners. All inside walls are covered with PMT holding structures. CHIPS will use thousands of 3-inch PMTs to detect neutrinos interacting in the high-purity water in the detector volume. The focus of the (poster) presentation at the NuPhys2017 conference was on DAQ and electronics for the CHIPS experiment.
227 - B. Acar , G. Adamov , C. Adloff 2020
The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in e ach bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${approx}12,000rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.
The v-Angra experiment aims to estimate the flux of antineutrino particles coming out from the Angra II nuclear reactor. Such flux is proportional to the thermal power released in the fission process and therefore can be used to infer the quantity of fuel that has been burned during a certain period. To do so, the v-Angra Collaboration has developed an antineutrino detector and a complete acquisition system to readout and store the signals generated by its sensors. The entire detection system has been installed inside a container laboratory placed beside the dome of the nuclear reactor, in a restricted zone of the Angra II site. The system is supposed to work standalone for a few years in order to collect enough data so that the experiment can be validated. The detectors readout electronics and its environmental conditions are crucial parts of the experiment and they should work autonomously and be controlled and monitored remotely. Additionally, threshold configuration is a central issue of the experiment since antineutrino particles produce low energy signals in the detector, being necessary to carefully adjust it for all the detector channels in order to make the system capable of detecting signals as low as those generated by single photons. To this end, an embedded system was developed and integrated to the detection apparatus installed in the container at the Angra II site and is now operational and accessible to the v-Angra Collaboration. This article aims at describing the proposed embedded system and presenting the results obtained during its commissioning phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا