ﻻ يوجد ملخص باللغة العربية
High penetration of renewable generation poses great challenge to power system operation due to its uncertain nature. In droop-controlled microgrids, the voltage volatility induced by renewable uncertainties is aggravated by the high droop gains. This paper proposes a chance-constrained optimal power flow (CC-OPF) problem with power flow routers (PFRs) to better regulate the voltage profile in microgrids. PFR refer to a general type of network-side controller that brings more flexibility to the power network. Comparing with the normal CC-OPF that relies on power injection flexibility only, the proposed model introduces a new dimension of control from power network to enhance system performance under renewable uncertainties. Since the inclusion of PFRs complicates the problem and makes common solvers no longer apply directly, we design an iterative solution algorithm. For the subproblem in each iteration, chance constraints are transformed into equivalent deterministic ones via sensitivity analysis, so that the subproblem can be efficiently solved by the convex relaxation method. The proposed method is verified on the modified IEEE 33-bus system and the results show that PFRs make a significant contribution to mitigating the voltage volatility and make the system operate in a more economic and secure way.
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-si
In chance-constrained OPF models, joint chance constraints (JCCs) offer a stronger guarantee on security compared to single chance constraints (SCCs). Using Booles inequality or its improv
Widespread utilization of renewable energy sources (RESs) in subtransmission systems causes serious problems on power quality, such as voltage violations, leading to significant curtailment of renewables. This is due to the inherent variability of re
We consider the problem of stability analysis for distribution grids with droop-controlled inverters and dynamic distribution power lines. The inverters are modeled as voltage sources with controllable frequency and amplitude. This problem is very ch
The presence of constant power loads (CPLs) in dc shipboard microgrids may lead to unstable conditions. The present work investigates the stability properties of dc microgrids where CPLs are fed by fuel cells (FCs), and energy storage systems (ESSs)