ترغب بنشر مسار تعليمي؟ اضغط هنا

C$^3$-Cluster Clustering Cosmology I. New constraints on the cosmic growth rate at z~0.3 from redshift-space clustering anisotropies

84   0   0.0 ( 0 )
 نشر من قبل Federico Marulli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Redshift-space distortions in the clustering of galaxy clusters provide a novel probe to test the gravity theory on cosmological scales. The aim of this work is to derive new constraints on the linear growth rate of cosmic structures from the redshift-space two-point correlation function of galaxy clusters. We construct a large spectroscopic catalogue of optically-selected clusters from the Sloan Digital Sky Survey. The selected sample consists of 43743 clusters in the redshift range 0.1<z<0.42, with masses estimated from weak-lensing calibrated scaling relations. We measure the transverse and radial wedges of the two-point correlation function of the selected clusters. Modelling the redshift-space clustering anisotropies, we provide the first constraints on the linear growth rate from cluster clustering. The cluster masses are used to set a prior on the linear bias of the sample. This represents the main advantage in using galaxy clusters as cosmic probes, instead of galaxies. Assuming a standard cosmological model consistent with the latest cosmic microwave background constraints, we do not find any evidence of deviations from General Relativity. Specifically, we get the value of the growth rate times the matter power spectrum normalisation parameter $fsigma_{8}=0.46pm0.03$, at an effective redshift z~0.3.

قيم البحث

اقرأ أيضاً

Redshift-space clustering distortions provide one of the most powerful probes to test the gravity theory on the largest cosmological scales. We perform a systematic validation study of the state-of-the-art statistical methods currently used to constr ain the linear growth rate from redshift-space distortions in the galaxy two-point correlation function. The numerical pipelines are tested on mock halo catalogues extracted from large N-body simulations of the standard cosmological framework. We consider both the monopole and quadrupole multipole moments of the redshift-space two-point correlation function, as well as the radial and transverse clustering wedges, in the comoving scale range $10<r[$Mpch$]<55$. Moreover, we investigate the impact of redshift measurement errors on the growth rate and linear bias measurements due to the assumptions in the redshift-space distortion model. Considering both the dispersion model and two widely-used models based on perturbation theory, we find that the linear growth rate is underestimated by about $5-10%$ at $z<1$, while limiting the analysis at larger scales, $r>30$ Mpch, the discrepancy is reduced below $5%$. At higher redshifts, we find instead an overall good agreement between measurements and model predictions. Though this accuracy is good enough for clustering analyses in current redshift surveys, the models have to be further improved not to introduce significant systematics in RSD constraints from next generation galaxy surveys. The effect of redshift errors is degenerate with the one of small-scale random motions, and can be marginalised over in the statistical analysis, not introducing any statistically significant bias in the linear growth constraints, especially at $zgeq1$.
136 - Risa H. Wechsler 2000
We use N-body simulations combined with semi-analytic models to compute the clustering properties of modeled galaxies at z~3, and confront these predictions with the clustering properties of the observed population of Lyman-break galaxies (LBGs). Sev eral scenarios for the nature of LBGs are explored, which may be broadly categorized into models in which high-redshift star formation is driven by collisional starbursts and those in which quiescent star formation dominates. For each model, we make predictions for the LBG overdensity distribution, the variance of counts-in-cells, the correlation length, and close pair statistics. Models which assume a one-to-one relationship between massive dark-matter halos and galaxies are disfavored by close pair statistics, as are models in which colliding halos are associated with galaxies in a simplified way. However, when modeling of gas consumption and star formation is included using a semi-analytic treatment, the quiescent and collisional starburst models predict similar clustering properties and none of these models can be ruled out based on the available clustering data. None of the ``realistic models predict a strong dependence of clustering amplitude on the luminosity threshold of the sample, in apparent conflict with some observational results.
We perform the first fit to the anisotropic clustering of SDSS-III CMASS DR10 galaxies on scales of ~ 0.8 - 32 Mpc/h. A standard halo occupation distribution model evaluated near the best fit Planck LCDM cosmology provides a good fit to the observed anisotropic clustering, and implies a normalization for the peculiar velocity field of M ~ 2 x 10^13 Msun/h halos of f*sigma8(z=0.57) = 0.450 +/- 0.011. Since this constraint includes both quasi-linear and non-linear scales, it should severely constrain modified gravity models that enhance pairwise infall velocities on these scales. Though model dependent, our measurement represents a factor of 2.5 improvement in precision over the analysis of DR11 on large scales, f*sigma8(z=0.57) = 0.447 +/- 0.028, and is the tightest single constraint on the growth rate of cosmic structure to date. Our measurement is consistent with the Planck LCDM prediction of 0.480 +/- 0.010 at the ~1.9 sigma level. Assuming a halo mass function evaluated at the best fit Planck cosmology, we also find that 10% of CMASS galaxies are satellites in halos of mass M ~ 6 x 10^13 Msun/h. While none of our tests and model generalizations indicate systematic errors due to an insufficiently detailed model of the galaxy-halo connection, the precision of these first results warrant further investigation into the modeling uncertainties and degeneracies with cosmological parameters.
We investigate the impact of different observational effects affecting a precise and accurate measurement of the growth rate of fluctuations from the anisotropy of clustering in galaxy redshift surveys. We focus on redshift measurement errors, on the reconstruction of the underlying real-space clustering and on the apparent degeneracy existing with the geometrical distortions induced by the cosmology-dependent conversion of redshifts into distances. We use a suite of mock catalogues extracted from large N-body simulations, focusing on the analysis of intermediate, mildly non-linear scales and apply the standard linear dispersion model to fit the anisotropy of the observed correlation function. We verify that redshift errors up to ~0.2% have a negligible impact on the precision with which the specific growth rate beta can be measured. Larger redshift errors introduce a positive systematic error, which can be alleviated by adopting a Gaussian distribution function of pairwise velocities. This is, in any case, smaller than the systematic error of up to 10% due to the limitations of the linear dispersion model, which is studied in a separate paper. We then show that 50% of the statistical error budget on beta depends on the deprojection procedure through which the real-space correlation function is obtained. Finally, we demonstrate that the degeneracy with geometric distortions can in fact be circumvented. This is obtained through a modified version of the Alcock-Paczynski test in redshift-space, which successfully recovers the correct cosmology by searching for the solution that optimizes the description of dynamical redshift distortions. For a flat cosmology, we obtain largely independent, robust constraints on beta and OmegaM. In a volume of 2.4(Gpc/h)^3, the correct OmegaM is obtained with ~12% error and negligible bias, once the real-space correlation function is properly reconstructed.
141 - Yi Zheng 2018
The mapping of galaxy clustering from real space to redshift space introduces the anisotropic property to the measured galaxy density power spectrum in redshift space, known as the redshift space distortion (RSD) effect. The mapping formula is intrin sically non-linear, which is complicated by the higher order polynomials due to indefinite orders of cross correlations between density and velocity fields, and the Finger--of--God (FoG) effect due to the randomness of the galaxy peculiar velocity field. In previous works, we have verified the robustness of advanced TNS mapping formula in our hybrid RSD model in dark matter case, where the halo bias models are not taken into account for the halo mapping formula in redshift space. Using 100 realizations of halo catalogs in N-body simulations, we find that our halo RSD model with the known halo bias model and the effective FoG function accurately predicts the halo power spectrum measurements, within 1$sim$2% accuracy up to $ksim 0.2h$/Mpc, depending on different halo masses and redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا