ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Wave Background Search by Correlating Multiple Triangular Detectors in the mHz Band

120   0   0.0 ( 0 )
 نشر من قبل Naoki Seto
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Naoki Seto




اسأل ChatGPT حول البحث

With the recent strong developments of TianQin and Taiji, we now have an increasing chance to make a correlation analysis in the mHz band by operating them together with LISA. Assuming two LISA-like triangular detectors at general geometrical configurations, we develop a simple formulation to evaluate the network sensitivity to an isotropic gravitational wave background. In our formulation, we fully use the symmetry of data channels within each triangular detector and provide tractable expressions without directly employing cumbersome detector tensors. We concretely evaluate the expected network sensitivities for various potential detector combinations, including the LISA-TianQin pair.

قيم البحث

اقرأ أيضاً

Recently, observational searches for gravitational wave background (GWB) have developed and given direct and indirect constraints on the energy density of GWB in a broad range of frequencies. These constraints have already rejected some theoretical m odels of large GWB spectra. However, at 100 MHz, there is no strict upper limit from direct observation, though the indirect limit by He4 abundance due to big-bang nucleosynthesis exists. In this paper, we propose an experiment with laser interferometers searching GWB at 100 MHz. We considered three detector designs and evaluated the GW response functions of a single detector. As a result, we found that, at 100 MHz, the most sensitive detector is the design, a so-called synchronous recycling interferometer, which has better sensitivity than an ordinary Fabry-Perot Michelson interferometer by a factor of 3.3 at 100 MHz. We also give the best sensitivity achievable at 100 MHz with realistic experimental parameters.
57 - Naoki Seto 2020
We discuss exploration for isotropic gravitational wave backgrounds around 1 mHz by correlation analysis, targeting both parity odd and even polarization modes. Even though the space interferometer LISA alone cannot probe the two modes due to cancell ations, the outlook is being changed drastically by the strong development of other space detectors such as Taiji. In fact, a heliocentric interferometer network holds a preferable geometrical symmetry {illuminated by a virtual sphere off-center from the Sun}. By utilizing an internal symmetry of data streams, we can optimally decompose the odd and even parity modes at correlation analysis. By simultaneously using LISA and Taiji for 10 years, our sensitivity to the two modes could reach $sim 10^{-12}$ in terms of the normalized energy density.
The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitati onal-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually-unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically-polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy-densities of tensor, vector, and scalar modes at 95% credibility to $Omega^T_0 < 5.6 times 10^{-8}$, $Omega^V_0 < 6.4times 10^{-8}$, and $Omega^S_0 < 1.1times 10^{-7}$ at a reference frequency $f_0 = 25$ Hz.
74 - Rory Smith , Eric Thrane 2017
Roughly every 2-10 minutes, a pair of stellar mass black holes merge somewhere in the Universe. A small fraction of these mergers are detected as individually resolvable gravitational-wave events by advanced detectors such as LIGO and Virgo. The rest contribute to a stochastic background. We derive the statistically optimal search strategy for a background of unresolved binaries. Our method applies Bayesian parameter estimation to all available data. Using Monte Carlo simulations, we demonstrate that the search is both safe and effective: it is not fooled by instrumental artefacts such as glitches, and it recovers simulated stochastic signals without bias. Given realistic assumptions, we estimate that the search can detect the binary black hole background with about one day of design sensitivity data versus $approx 40$ months using the traditional cross-correlation search. This framework independently constrains the merger rate and black hole mass distribution, breaking a degeneracy present in the cross-correlation approach. The search provides a unified framework for population studies of compact binaries, which is cast in terms of hyper-parameter estimation. We discuss a number of extensions and generalizations including: application to other sources (such as binary neutron stars and continuous-wave sources), simultaneous estimation of a continuous Gaussian background, and applications to pulsar timing.
We show that the anisotropies of the astrophysical stochastic gravitational wave background in the mHz band have a strong dependence on the modelling of galactic and sub-galactic physics. We explore a wide range of self-consistent astrophysical model s for stellar evolution and for the distribution of orbital parameters, all calibrated such that they predict the same number of resolved mergers to fit the number of detections during LIGO/Virgo O1+O2 observations runs. We show that different physical choices for the process of black hole collapse and cut-off in the black hole mass distribution give fractional differences in the angular power spectrum of anisotropies up to 50% on all angular scales. We also point out that the astrophysical information which can be extracted from anisotropies is complementary to the isotropic background and individual mergers. These results underline the interest in the anisotropies of the stochastic gravitational wave background as a new and potentially rich field of research, at the cross-road between astrophysics and cosmology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا