ترغب بنشر مسار تعليمي؟ اضغط هنا

Unfolding the Neutron Spectra from a Water-Pumping-Injection Multi-layered Concentric Sphere Neutron Spectrometer Using a Self-Adaptive Differential Evolution Algorithm

91   0   0.0 ( 0 )
 نشر من قبل Rui Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A self-adaptive differential evolution neutron spectrum unfolding algorithm (SDENUA) was established in this paper to unfold the neutron spectra obtained from a Water-pumping-injection Multi-layered concentric sphere Neutron Spectrometer (WMNS). Specifically, the neutron fluence bounds were estimated to accelerate the algorithm convergence, the minimum error between the optimal solution and the input neutron counts with relative uncertainties was limited to 10-6 to avoid useless calculation. Furthermore, the crossover probability and scaling factor were controlled self-adaptively. FLUKA Monte Carlo was used to simulate the readings of the WMNS under (1) a spectrum of Cf-252 and (2) its spectrum after being moderated, (3) a spectrum used for BNCT, and (4) a reactor spectrum, and the measured neutron counts unfolded by using the SDENUA. The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA, which does not require complex parameter tuning and the priori default spectrum. Results indicate that the solutions of the SDENUA are more in agreement with the IAEA spectra than that of the MAXED and GRAVEL in UMG 3.1, and the errors of the final results calculated by SDENUA are under 12%. The established SDENUA has potential applications for unfolding spectra from the WMNS.



قيم البحث

اقرأ أيضاً

117 - M. C. Chu , K. Y. Fung , T. Kwok 2016
Bonner Spheres have been used widely for the measurement of neutron spectra with neutron energies ranged from thermal up to at least 20 MeV. A Bonner Sphere neutron spectrometer (BSS) was developed by extending a Berthold LB 6411 neutron-dose-rate me ter. The BSS consists of a $^{3}$He thermal-neutron detector with integrated electronics, a set of eight polyethylene spherical shells and two optional lead shells of various sizes. The response matrix of the BSS was calculated with GEANT4 Monte Carlo simulation. The BSS had a calibration uncertainty of $pm 8.6%$ and a detector background rate of $(1.57 pm 0.04) times 10^{-3}$ s$^{-1}$. A spectral unfolding code NSUGA was developed. The NSUGA code utilizes genetic algorithms and has been shown to perform well in the absence of a priori information.
A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the meth od of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.
The spallation neutrons were produced by the irradiation of Pb with 250 MeV protons. The Pb target was surrounded by water which was used to slow down the emitted neutrons. The moderated neutrons in the water bath were measured by using the resonance detectors of Au, Mn and In with Cd cover. According to the measured activities of the foils, the neutron flux at different resonance energy were deduced and the epithermal neutron spectra were proposed. Corresponding results calculated with the Monte Carlo code MCNPX were compared with the experimental data to check the validity of the code.
130 - D. Maire , J. Billard , G. Bosson 2013
In order to measure the energy of neutron fields, with energy ranging from 8 keV to 1 MeV, a new primary standard is being developed at the IRSN (Institute for Radioprotection and Nuclear Safety). This project, micro-TPC (Micro Time Projection Chambe r), carried out in collaboration with the LPSC (Laboratoire de Physique Subatomique et de Cosmologie), is based on the nuclear recoil detector principle. The instrument is presented with the associated method to measure the neutron energy. This article emphasizes the proton energy calibration procedure and energy measurements of a neutron field produced at 127 keV with the IRSN facility AMANDE.
185 - M. Osipenko , M. Ripani , G. Ricco 2015
In this paper we describe the development and first tests of a neutron spectrometer designed for high flux environments, such as the ones found in fast nuclear reactors. The spectrometer is based on the conversion of neutrons impinging on $^6$Li into $alpha$ and $t$ whose total energy comprises the initial neutron energy and the reaction $Q$-value. The $^6$LiF layer is sandwiched between two CVD diamond detectors, which measure the two reaction products in coincidence. The spectrometer was calibrated at two neutron energies in well known thermal and 3 MeV neutron fluxes. The measured neutron detection efficiency varies from 4.2$times 10^{-4}$ to 3.5$times 10^{-8}$ for thermal and 3 MeV neutrons, respectively. These values are in agreement with Geant4 simulations and close to simple estimates based on the knowledge of the $^6$Li(n,$alpha$)$t$ cross section. The energy resolution of the spectrometer was found to be better than 100 keV when using 5 m cables between the detector and the preamplifiers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا