ﻻ يوجد ملخص باللغة العربية
Detection of moving objects is an essential capability in dealing with dynamic environments. Most moving object detection algorithms have been designed for color images without depth. For robotic navigation where real-time RGB-D data is often readily available, utilization of the depth information would be beneficial for obstacle recognition. Here, we propose a simple moving object detection algorithm that uses RGB-D images. The proposed algorithm does not require estimating a background model. Instead, it uses an occlusion model which enables us to estimate the camera pose on a background confused with moving objects that dominate the scene. The proposed algorithm allows to separate the moving object detection and visual odometry (VO) so that an arbitrary robust VO method can be employed in a dynamic situation with a combination of moving object detection, whereas other VO algorithms for a dynamic environment are inseparable. In this paper, we use dense visual odometry (DVO) as a VO method with a bi-square regression weight. Experimental results show the segmentation accuracy and the performance improvement of DVO in the situations. We validate our algorithm in public datasets and our dataset which also publicly accessible.
We present ClusterVO, a stereo Visual Odometry which simultaneously clusters and estimates the motion of both ego and surrounding rigid clusters/objects. Unlike previous solutions relying on batch input or imposing priors on scene structure or dynami
The present paper reviews the classical problem of free-form curve registration and applies it to an efficient RGBD visual odometry system called Canny-VO, as it efficiently tracks all Canny edge features extracted from the images. Two replacements f
Motion blur is one of the major challenges remaining for visual odometry methods. In low-light conditions where longer exposure times are necessary, motion blur can appear even for relatively slow camera motions. In this paper we present a novel hybr
We present a novel self-supervised algorithm named MotionHint for monocular visual odometry (VO) that takes motion constraints into account. A key aspect of our approach is to use an appropriate motion model that can help existing self-supervised mon
The ability to simultaneously track and reconstruct multiple objects moving in the scene is of the utmost importance for robotic tasks such as autonomous navigation and interaction. Virtually all of the previous attempts to map multiple dynamic objec