ﻻ يوجد ملخص باللغة العربية
We report the development of a discontinuous spectral element flow solver that includes the implementation of both spectral difference and flux reconstruction formulations. With this high order framework, we have constructed a foundation upon which to provide a fair and accurate assessment of these two schemes in terms of accuracy, stability, and performance with special attention to the true spectral difference scheme and the modified spectral difference scheme recovered via the flux reconstruction formulation. Building on previous analysis of the spectral difference and flux reconstruction schemes, we provide a novel nonlinear stability analysis of the spectral difference scheme. Through various numerical experiments, we demonstrate the additional stability afforded by the true, baseline spectral difference scheme without explicit filtering or de-aliasing due to its inherent feature of staggered flux points. This arrangement leads to favorable suppression of aliasing errors and improves stability needed for under-resolved simulations of turbulent flows.
With a noticeable increase in research centered on modeling micro fluid interfaces in the framework of mesoscopic methods, we conduct an exhaustive study of discrete unified gas-kinetics scheme (DUGKS) in handling complicated interface deformations.
Computing the solution of linear systems of equations is invariably the most time consuming task in the numerical solutions of PDEs in many fields of computational science. In this study, we focus on the numerical simulation of cardiovascular hemodyn
A new simulation method for solving fluid-structure coupling problems has been developed. All the basic equations are numerically solved on a fixed Cartesian grid using a finite difference scheme. A volume-of-fluid formulation (Hirt and Nichols (1981
We show that a recently introduced stochastic thermostat [J. Chem. Phys. 126 (2007) 014101] can be considered as a global version of the Langevin thermostat. We compare the global scheme and the local one (Langevin) from a formal point of view and th
The secondary Bjerknes force plays a significant role in the evolution of bubble clusters. However, due to the complex dependence of the force on multiple parameters, it is highly non-trivial to include the effects of this force in the simulations of