ترغب بنشر مسار تعليمي؟ اضغط هنا

Accretion disks magnetic field controlled the composition of the terrestrial planets

94   0   0.0 ( 0 )
 نشر من قبل Takashi Yoshizaki
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Chondrites, the building blocks of the terrestrial planets, have mass and atomic proportions of oxygen, iron, magnesium, and silicon totaling $geq$90% and variable Mg/Si ($sim$25%), Fe/Si (factor of $geq$2), and Fe/O (factor of $geq$3). The Earth and terrestrial planets (Mercury, Venus, and Mars) are differentiated into three layers: a metallic core, a silicate shell (mantle and crust), and a volatile envelope of gases, ices, and, for the Earth, liquid water. Each layer has different dominant elements (e.g., increasing Fe content with depth and increasing oxygen content to the surface). What remains an unknown is to what degree did physical processes during nebular disk accretion versus those during post-nebular disk accretion (e.g., impact erosion) influence these final bulk compositions. Here we predict terrestrial planet compositions and show that their core mass fractions and uncompressed densities correlate with their heliocentric distance, and follow a simple model of the magnetic field strength in the protoplanetary disk. Our model assesses the distribution of iron in terms of increasing oxidation state, aerodynamics, and a decreasing magnetic field strength outward from the Sun, leading to decreasing core size of the terrestrial planets with radial distance. This distribution would enhance habitability in our solar system, and would be equally applicable to exo-planetary systems.



قيم البحث

اقرأ أيضاً

Kepler-93b is a 1.478 +/- 0.019 Earth radius planet with a 4.7 day period around a bright (V=10.2), astroseismically-characterized host star with a mass of 0.911+/-0.033 solar masses and a radius of 0.919+/-0.011 solar radii. Based on 86 radial veloc ity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02+/-0.68 Earth masses. The corresponding high density of 6.88+/-1.18 g/cc is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1-6 Earth masses, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses > 6 Earth masses: All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 Earth mass planets.
78 - Anders Johansen 2021
Pebbles of millimeter sizes are abundant in protoplanetary discs around young stars. Chondrules inside primitive meteorites - formed by melting of dust aggregate pebbles or in impacts between planetesimals - have similar sizes. The role of pebble acc retion for terrestrial planet formation is nevertheless unclear. Here we present a model where inwards-drifting pebbles feed the growth of terrestrial planets. The masses and orbits of Venus, Earth, Theia (which later collided with the Earth to form the Moon) and Mars are all consistent with pebble accretion onto protoplanets that formed around Mars orbit and migrated to their final positions while growing. The isotopic compositions of Earth and Mars are matched qualitatively by accretion of two generations of pebbles, carrying distinct isotopic signatures. Finally, we show that the water and carbon budget of Earth can be delivered by pebbles from the early generation before the gas envelope became hot enough to vaporise volatiles.
We present the results of an extensive study of the final stage of terrestrial planet formation in disks with different surface density profiles and for different orbits of Jupiter and Saturn. We carried out simulations for disk densities proportiona l to r^-0.5, r^-1, and r^-1.5, and also for partially depleted disks as in the recent model of Mars formation by Izidoro et al (2014). The purpose of our study is to determine how the final assembly of planets and their physical properties are affected by the total mass of the disk and its radial profile. Because of the important roles of secular resonances in orbits and properties of the final planets, we studied the effects of these resonances as well. We have divided this study into two parts. In Part 1, we are interested in examining the effects of secular resonances on the formation of Mars and orbital stability of terrestrial planets. In Part 2, our goal is to determine trends that may exist between the disk surface density profile and the final properties of terrestrial planets. In the context of the depleted disk model, results show that the nu_5 resonance does not have a significant effect on the final orbits of terrestrial planets. However, nu_6 and nu_16 resonances play important roles in clearing their affected areas ensuring that no additional mass will be scattered into the accretion zone of Mars so that it can maintain its mass and orbital stability. In Part 2, our results indicate that despite some small correlations, in general, no trend seems to exist between the disk surface density profile and the mean number of the final planets, their masses, time of formation, and distances to the central star. We present the results of our simulations and discuss their implications for the formation of Mars and other terrestrial planets, as well as the physical properties of these objects such as their masses and water contents.
Recently, gas disks have been discovered around main sequence stars well beyond the usual protoplanetary disk lifetimes (i.e., > 10 Myrs), when planets have already formed. These gas disks, mainly composed of CO, carbon, and oxygen seem to be ubiquit ous in systems with planetesimal belts (similar to our Kuiper belt), and can last for hundreds of millions of years. Planets orbiting in these gas disks will accrete a large quantity of gas that will transform their primordial atmospheres into new secondary atmospheres with compositions similar to that of the parent gas disk. Here, we quantify how large a secondary atmosphere can be created for a variety of observed gas disks and for a wide range of planet types. We find that gas accretion in this late phase is very significant and an Earths atmospheric mass of gas is readily accreted on terrestrial planets in very tenuous gas disks. In slightly more massive disks, we show that massive CO atmospheres can be accreted, forming planets with up to sub-Neptune-like pressures. Our new results demonstrate that new secondary atmospheres with high metallicities and high C/O ratios will be created in these late gas disks, resetting their primordial compositions inherited from the protoplanetary disk phase, and providing a new birth to planets that lost their atmosphere to photoevaporation or giant impacts. We therefore propose a new paradigm for the formation of atmospheres on low-mass planets, which can be tested with future observations (JWST, ELT, ARIEL). We also show that this late accretion would show a very clear signature in Sub-Neptunes or cold exo-Jupiters. Finally, we find that accretion creates cavities in late gas disks, which could be used as a new planet detection method, for low mass planets a few au to a few tens of au from their host stars.
Priorities in exo-planet research are rapidly moving from finding planets to characterizing their physical properties. Of key importance is their chemical composition, which feeds back into our understanding of planet formation. For the foreseeable f uture, far-ultraviolet spectroscopy of white dwarfs accreting planetary debris remains the only way to directly and accurately measure the bulk abundances of exo-planetary bodies. The exploitation of this method is limited by the sensitivity of HST, and significant progress will require a large-aperture space telescope with a high-throughput ultraviolet spectrograph.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا