ترغب بنشر مسار تعليمي؟ اضغط هنا

Counting $k$-Naples parking functions through permutations and the $k$-Naples area statistic

193   0   0.0 ( 0 )
 نشر من قبل Laura Colmenarejo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We recall that the $k$-Naples parking functions of length $n$ (a generalization of parking functions) are defined by requiring that a car which finds its preferred spot occupied must first back up a spot at a time (up to $k$ spots) before proceeding forward down the street. Note that the parking functions are the specialization of $k$ to $0$. For a fixed $0leq kleq n-1$, we define a function $varphi_k$ which maps a $k$-Naples parking function to the permutation denoting the order in which its cars park. By enumerating the sizes of the fibers of the map $varphi_k$ we give a new formula for the number of $k$-Naples parking functions as a sum over the permutations of length $n$. We remark that our formula for enumerating $k$-Naples parking functions is not recursive, in contrast to the previously known formula of Christensen et al [CHJ+20]. It can be expressed as the product of the lengths of particular subsequences of permutations, and its specialization to $k=0$ gives a new way to describe the number of parking functions of length $n$. We give a formula for the sizes of the fibers of the map $varphi_0$, and we provide a recurrence relation for its corresponding logarithmic generating function. Furthermore, we relate the $q$-analog of our formula to a new statistic that we denote $texttt{area}_k$ and call the $k$-Naples area statistic, the specialization of which to $k=0$ gives the $texttt{area}$ statistic on parking functions.

قيم البحث

اقرأ أيضاً

This paper studies a generalization of parking functions named $k$-Naples parking functions, where backward movement is allowed. One consequence of backward movement is that the number of ascending $k$-Naples is not the same as the number of descendi ng $k$-Naples. This paper focuses on generalizing the bijections of ascending parking functions with combinatorial objects enumerated by the Catalan numbers in the setting of both ascending and descending $k$-Naples parking functions. These combinatorial objects include Dyck paths, binary trees, triangulations of polygons, and non-crossing partitions. Using these bijections, we enumerate both ascending and descending $k$-Naples parking functions.
We consider permutations sortable by $k$ passes through a deterministic pop stack. We show that for any $kinmathbb N$ the set is characterised by finitely many patterns, answering a question of Claesson and Gu{dh}mundsson. Our characterisation dema nds a more precise definition than in previous literature of what it means for a permutation to avoid a set of barred and unbarred patterns. We propose a new notion called emph{$2$-avoidance}.
The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch ur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottiles $r$-Bruhat order, along with certain operators associated to this order. On the other side, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem.
In this paper we enumerate $k$-noncrossing tangled-diagrams. A tangled-diagram is a labeled graph whose vertices are $1,...,n$ have degree $le 2$, and are arranged in increasing order in a horizontal line. Its arcs are drawn in the upper halfplane wi th a particular notion of crossings and nestings. Our main result is the asymptotic formula for the number of $k$-noncrossing tangled-diagrams $T_{k}(n) sim c_k n^{-((k-1)^2+(k-1)/2)} (4(k-1)^2+2(k-1)+1)^n$ for some $c_k>0$.
For each skew shape we define a nonhomogeneous symmetric function, generalizing a construction of Pak and Postnikov. In two special cases, we show that the coefficients of this function when expanded in the complete homogeneous basis are given in ter ms of the (reduced) type of $k$-divisible noncrossing partitions. Our work extends Haimans notion of a parking function symmetric function.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا