ترغب بنشر مسار تعليمي؟ اضغط هنا

X-rays observations of a super-Chandrasekhar object reveal an ONeMg and a CO white dwarf merger product embedded in a putative SN Iax remnant

59   0   0.0 ( 0 )
 نشر من قبل Lidia Oskinova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The merger of two white dwarfs (WD) is a natural outcome from the evolution of many binary stars. Recently, a WD merger product, IRAS 00500+6713, was identified. IRAS 00500+6713 consists of a central star embedded in a circular nebula. The analysis of the optical spectrum of the central star revealed that it is hot, hydrogen and helium free, and drives an extremely fast wind with a record breaking speed. The nebula is visible in infrared and in the [O III] line images. No nebula spectroscopy was obtained prior to our observations. Here we report the first deep X-ray imaging spectroscopic observations of IRAS 00500+6713. Both the central star and the nebula are detected in X-rays, heralding the WD merger products as a new distinct type of strong X-ray sources. Low-resolution X-ray spectra reveal large neon, magnesium, silicon, and sulfur enrichment of the central star and the nebula. We conclude that IRAS 00500+6713 resulted from a merger of an ONe and a CO WD, which supports earlier suggestion for a super-Chandrasekhar mass of this object. X-ray analysis indicates that the merger was associated with an episode of carbon burning and possibly accompanied by a SN Iax. In X-rays, we observe the point source associated with the merger product while the surrounding diffuse nebula is a supernova remnant. IRAS 00500+6713 will likely terminate its evolution with another peculiar Type I supernova, where the final core collapse to a neutron star might be induced by electron captures.


قيم البحث

اقرأ أيضاً

We present UV through NIR broad-band photometry, and optical and NIR spectroscopy of Type Iax supernova 2012Z. The data set consists of both early and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopicall y classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M_sun of (56)Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~10^51 erg, making it one of the brightest and most energetic SN Iax yet observed. The late phase NIR spectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially compared to all supernova types. Constraints from the distribution of IMEs, e.g. silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the (56)Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of (56)Ni during the deflagration burning phase and little (or no) (56)Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the IMEs is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of (56)Ni production during the early subsonic phase of expansion.
Supernova Ia are bright explosive events that can be used to estimate cosmological distances, allowing us to study the expansion of the Universe. They are understood to result from a thermonuclear detonation in a white dwarf that formed from the exha usted core of a star more massive than the Sun. However, the possible progenitor channels leading to an explosion are a long-standing debate, limiting the precision and accuracy of supernova Ia as distance indicators. Here we present HD265435, a binary system with an orbital period of less than a hundred minutes, consisting of a white dwarf and a hot subdwarf -- a stripped core-helium burning star. The total mass of the system is 1.65+/-0.25 solar-masses, exceeding the Chandrasekhar limit (the maximum mass of a stable white dwarf). The system will merge due to gravitational wave emission in 70 million years, likely triggering a supernova Ia event. We use this detection to place constraints on the contribution of hot subdwarf-white dwarf binaries to supernova Ia progenitors.
86 - M. R. Magee 2016
We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of M$_r$ = -17.27 $pm$ 0.07, and a ($Delta m_{15})_r$ = 0.69 $pm$ 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ~0.2 M$_{odot}$ of material containing ~0.07 M$_{odot}$ of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that $lesssim$0.6 M_sun of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.
White dwarfs are dense, cooling stellar embers consisting mostly of carbon and oxygen, or oxygen and neon (with a few percent carbon) at higher initial stellar masses. These stellar cores are enveloped by a shell of helium which in turn is usually su rrounded by a layer of hydrogen, generally prohibiting direct observation of the interior composition. However, carbon is observed at the surface of a sizeable fraction of white dwarfs, sometimes with traces of oxygen, and it is thought to be dredged-up from the core by a deep helium convection zone. In these objects only traces of hydrogen are found as large masses of hydrogen are predicted to inhibit hydrogen/helium convective mixing within the envelope. We report the identification of WDJ055134.612+413531.09, an ultra-massive (1.14 $M_odot$) white dwarf with a unique hydrogen/carbon mixed atmosphere (C/H=0.15 in number ratio). Our analysis of the envelope and interior indicates that the total hydrogen and helium mass fractions must be several orders of magnitude lower than predictions of single star evolution: less than $10^{-9.5}$ and $10^{-7.0}$, respectively. Due to the fast kinematics ($129pm5$ km/s relative to the local standard of rest), large mass, and peculiar envelope composition, we argue that WDJ0551+4135 is consistent with formation from the merger of two white dwarfs in a tight binary system.
WD J005311 is a newly identified white dwarf (WD) in a mid-infrared nebula. The spectroscopic observation indicates the existence of a neon-enriched carbon/oxygen wind with a terminal velocity of $v_{infty,rm obs}sim 16,000,rm km,s^{-1}$ and a mass l oss rate of $dot M_{rm obs}sim 3.5times 10^{-6},M_odot$ yr$^{-1}$. Here we consistently explain the properties of WD J005311 using a newly constructed wind solution, where the optically thick outflow is launched from the carbon burning shell on an oxygen-neon core and accelerated by the rotating magnetic field to become supersonic and unbound well below the photosphere. Our model implies that WD J005311 has a mass of $M_* sim 1.1mbox{-}1.3,M_odot$, a magnetic field of $B_* sim (2mbox{-}5)times 10^7,rm G$, and a spin angular frequency of $Omega sim 0.2mbox{-}0.5 ,rm s^{-1}$. The large magnetic field and fast spin support the carbon-oxygen WD merger origin. WD J005311 will neither explode as a type Ia supernova nor collapse into a neutron star. If the wind continues to blow another few kyr, WD J005311 will spin down significantly and join to the known sequence of slowly-rotating magnetic WDs. Otherwise it may appear as a fast-spinning magnetic WD and could be a new high energy source.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا