ﻻ يوجد ملخص باللغة العربية
The dispersion scan (d-scan) technique has emerged as a simple-to-implement characterization method for ultrashort laser pulses. D-scan traces are intuitive to interpret and retrieval algorithms that are both fast and robust have been developed to obtain the spectral phase and the temporal pulse profile. Here, we give a review of the d-scan technique based on second harmonic generation. We describe and compare recent implementations for the characterization of few- and multi-cycle pulses as well as two different approaches for recording d-scan traces in single-shot, thus showing the versatility of the technique.
We present a novel spectroscopic technique for second harmonic generation (SHG) using femtosecond laser pulses at 30~kHz repetition rate, which nevertheless provides high spectral resolution limited only by the spectrometer. The potential of this met
We study the influence of the pulse duration on high harmonic generation (HHG) with exploring a wide laser-parameter region theoretically. Previous studies have showed that for high laser intensities near to the saturation ionization intensity, the H
We demonstrate a novel dispersion-scan (d-scan) scheme for single-shot temporal characterization of ultrashort laser pulses. The novelty of this method relies on the use of a highly dispersive crystal featuring antiparallel nonlinear domains with a r
Quantum cascade lasers (QCL) have revolutionized the generation of mid-infrared light. Yet, the ultrafast carrier transport in mid-infrared QCLs has so far constituted a seemingly insurmountable obstacle for the formation of ultrashort light pulses.
Lead-magnesium niobate lead-titanate (PMN-PT) has been proven as an excellent material for sensing and actuating applications. The fabrication of advanced ultra-small PMN-PT-based devices relies on the availability of sophisticated procedures for the