ﻻ يوجد ملخص باللغة العربية
Partially synchronous Byzantine consensus protocols typically structure their execution into a sequence of views, each with a designated leader process. The key to guaranteeing liveness in these protocols is to ensure that all correct processes eventually overlap in a view with a correct leader for long enough to reach a decision. We propose a simple view synchronizer abstraction that encapsulates the corresponding functionality for Byzantine consensus protocols, thus simplifying their design. We present a formal specification of a view synchronizer and its implementation under partial synchrony, which runs in bounded space despite tolerating message loss during asynchronous periods. We show that our synchronizer specification is strong enough to guarantee liveness for single-sh
We present new protocols for Byzantine state machine replication and Byzantine agreement in the synchronous and authenticated setting. The celebrated PBFT state machine replication protocol tolerates $f$ Byzantine faults in an asynchronous setting us
Byzantine fault-tolerant (BFT) state machine replication (SMR) has been studied for over 30 years. Recently it has received more attention due to its application in permissioned blockchain systems. A sequence of research efforts focuses on improving
This paper presents a novel leaderless protocol (FPC-BI: Fast Probabilistic Consensus within Byzantine Infrastructures) with a low communicational complexity and which allows a set of nodes to come to a consensus on a value of a single bit. The paper
In this paper, we give a deterministic two-step Byzantine consensus protocol that achieves safety and liveness. A two-step Byzantine consensus protocol only needs two communication steps to commit in the absence of faults. Most two-step Byzantine con
We give fault-tolerant algorithms for establishing synchrony in distributed systems in which each of the $n$ nodes has its own clock. Our algorithms operate in a very strong fault model: we require self-stabilisation, i.e., the initial state of the s