ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrimination of Ohmic thermal baths by quantum dephasing probes

93   0   0.0 ( 0 )
 نشر من قبل Matteo G. A. Paris
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We address the discrimination of structured baths at different temperatures by dephasing quantum probes. We derive the exact reduced dynamics and evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a qubit, a qutrit and a quantum register made of two qubits. Our results indicate that dephasing quantum probes are useful in discriminating low values of temperature, and that lower probabilities of error are achieved for intermediate values of the interaction time. A qutrit probe outperforms a qubit one in the discrimination task, whereas a register made of two qubits does not offer any advantage compared to two single qubits used sequentially.

قيم البحث

اقرأ أيضاً

Non-equilibrium states of quantum systems in contact with thermal baths help telling environments with different temperatures or different statistics apart. We extend these studies to a more generic problem that consists in discriminating between two baths with disparate constituents at unequal temperatures. Notably there exist temperature regimes in which the presence of coherence in the initial state preparation is beneficial for the discrimination capability. We also find that non-equilibrium states are not universally optimal, and detail the conditions in which it becomes convenient to wait for complete thermalisation of the probe. These concepts are illustrated in a linear optical simulation.
It is often the case that the environment of a quantum system may be described as a bath of oscillators with Ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or to tailor quantum information protocols. Recently, the use of quantum probes in characterizing Ohmic environments at zero-temperature has been discussed, showing that a single qubit provides precise estimation of the cutoff frequency. On the other hand, thermal noise often spoil quantum probing schemes, and for this reason we here extend the analysis to complex system at thermal equilibrium. In particular, we discuss the interplay between thermal fluctuations and time evolution in determining the precision {attainable by} quantum probes. Our results show that the presence of thermal fluctuations degrades the precision for low values of the cutoff frequency, i.e. values of the order $omega_c lesssim T$ (in natural units). For larger values of $omega_c$ decoherence is mostly due to the structure of environment, rather than thermal fluctuations, such that quantum probing by a single qubit is still an effective estimation procedure.
We put forth, theoretically and experimentally, the possibility of drastically cooling down (purifying) thermal ensembles (baths) of solid-state spins via a sequence of projective measurements of a probe spin that couples to the bath in an arbitrary fashion. If the measurement intervals are chosen to correspond to the anti-Zeno regime of the probe-bath exchange, then a short sequence of measurements with selected outcomes is found to have an appreciable success probability. Such a sequence is shown to condition the bath evolution so that it can dramatically enhance the bath-state purity and yield a low-entropy steady state of the bath. This purified bath state persists after the measurements and can be chosen, on-demand, to allow for Zeno- or anti-Zeno- like evolution of quantum systems coupled to the purified bath. The experimental setup for observing these effects consists of a Nitrogen Vacancy (NV) center in diamond at low temperature that acts as a probe of the surrounding nuclear spin bath. The NV single-shot measurements are induced by optical fields at microsecond intervals.
Quantum probing consists of suitably exploiting a simple, small, and controllable quantum system to characterize a larger and more complex system. Here, we address the estimation of the cutoff frequency of the Ohmic spectral density of a harmonic res ervoir by quantum probes. To this aim, we address the use of single-qubit and two-qubit systems and different kinds of coupling with the bath of oscillators. We assess the estimation precision by the quantum Fisher information of the sole quantum probe as well as the corresponding quantum signal-to-noise ratio. We prove that, for most of the values of the Ohmicity parameter, a simple probe such as a single qubit is already optimal for the precise estimation of the cutoff frequency. Indeed for those values, upon considering a two-qubit probe either in a Bell or in separable state, we do not find improvement to the estimation precision. However, we also showed that there exist few conditions where employing two qubits in a Bell state interacting with a common bath is more suitable for precisely estimating the cutoff frequency.
We consider thermal machines powered by locally equilibrium reservoirs that share classical or quantum correlations. The reservoirs are modelled by the so-called collisional model or repeated interactions model. In our framework, two reservoir partic les, initially prepared in a thermal state, are correlated through a unitary transformation and afterwards interact locally with the two quantum subsystems which form the working fluid. For a particular class of unitaries, we show how the transformation applied to the reservoir particles affects the amount of heat transferred and the work produced. We then compute the distribution of heat and work when the unitary is chosen randomly, proving that the total swap transformation is the optimal one. Finally, we analyse the performance of the machines in terms of classical and quantum correlations established among the microscopic constituents of the machine.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا