ﻻ يوجد ملخص باللغة العربية
We discuss the phase dependent nonlocal thermoelectric effect in a topological Josephson junction in contact with a normal-metal probe. We show that, due to the helical nature of topological edge states, nonlocal thermoelectricity is generated by a purely Andreev interferometric mechanism. This response can be tuned by imposing a Josephson phase difference, through the application of a dissipationless current between the two superconductors, even without the need of applying an external magnetic field. We discuss in detail the origin of this effect and we provide also a realistic estimation of the nonlocal Seebeck coefficient that results of the order of few $mu V/K$.
We investigate the nonlocal thermoelectric transport in a Cooper-pair splitter based on a double-quantum-dot-superconductor three-terminal hybrid structure. We find that the nonlocal coupling between the superconductor and the quantum dots gives rise
We report on a new type of Fano effect, named as Andreev-Fano effect, in a hybrid normal-metal / superconductor (N/S) interferometer embedded with a quantum dot. Compared with the conventional Fano effect, Andreev-Fano effect has some new features re
We study Andreev reflection and Josephson currents in topological bilayer exciton condensates (TEC). These systems can create 100% spin entangled nonlocal currents with high amplitudes due to perfect nonlocal Andreev reflection. This Andreev reflecti
At present, topological insulators are the most efficient thermoelectric materials at room temperature. However, at non-zero temperatures, it seems to arise a conflict between having time-reversal symmetry, which implies minimal entropy, and the Seeb
Topological edge states are predicted to be responsible for the high efficient thermoelectric response of topological insulators, currently the best thermoelectric materials. However, to explain their figure of merit the coexistence of topological el