ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementing multi-wavelength fringe tracking for the Large Binocular Telescope Interferometers phase sensor, PHASECam

83   0   0.0 ( 0 )
 نشر من قبل Erin Maier
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

PHASECam is the fringe tracker for the Large Binocular Telescope Interferometer (LBTI). It is a near-infrared camera which is used to measure both tip/tilt and fringe phase variations between the two adaptive optics (AO) corrected apertures of the Large Binocular Telescope (LBT). Tip/tilt and phase sensing are currently performed in the $H$ (1.65 $mu$m) and $K$ (2.2 $mu$m) bands at 1 kHz, but only the $K$-band phase telemetry is used to send corrections to the system in order to maintain fringe coherence and visibility. However, due to the cyclic nature of the fringe phase, only the phase, modulo 360 deg, can be measured. PHASECams phase unwrapping algorithm, which attempts to mitigate this issue, occasionally fails in the case of fast, large phase variations or low signal-to-noise ratio. This can cause a fringe jump, in which case the OPD correction will be incorrect by a wavelength. This can currently be manually corrected by the operator. However, as the LBTI commissions further modes which require robust, active phase control and for which fringe jumps are harder to detect, including multi-axial (Fizeau) interferometry and dual-aperture non-redundant aperture masking interferometry, a more reliable and automated solution is desired. We present a multi-wavelength method of fringe jump capture and correction which involves direct comparison between the $K$-band and $H$-band phase telemetry. We demonstrate the method utilizing archival PHASECam telemetry, showing it provides a robust, reliable way of detecting fringe jumps which can potentially recover a significant fraction of the data lost to them.

قيم البحث

اقرأ أيضاً

87 - D. Defr`ere , P. Hinz , E. Downey 2015
The Large Binocular Telescope Interferometer is a NASA-funded nulling and imaging instrument designed to coherently combine the two 8.4-m primary mirrors of the LBT for high-sensitivity, high-contrast, and high-resolution infrared imaging (1.5-13 um) . PHASECam is LBTIs near-infrared camera used to measure tip-tilt and phase variations between the two AO-corrected apertures and provide high-angular resolution observations. We report on the status of the system and describe its on-sky performance measured during the first semester of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope and the light-gathering power of single 11.8-meter mirror, the co-phased LBT can be considered to be a forerunner of the next-generation extremely large telescopes (ELT).
The fringe sensor unit (FSU) is the central element of the phase referenced imaging and micro-arcsecond astrometry (PRIMA) dual-feed facility for the Very Large Telescope interferometer (VLTI). It has been installed at the Paranal observatory in Augu st 2008 and is undergoing commissioning and preparation for science operation. Commissioning observations began shortly after installation and first results include the demonstration of spatially encoded fringe sensing and the increase in VLTI limiting magnitude for fringe tracking. However, difficulties have been encountered because the FSU does not incorporate real-time photometric correction and its fringe encoding depends on polarisation. These factors affect the control signals, especially their linearity, and can disturb the tracking control loop. To account for this, additional calibration and characterisation efforts are required. We outline the instrument concept and give an overview of the commissioning results obtained so far. We describe the effects of photometric variations and beam-train polarisation on the instrument operation and propose possible solutions. Finally, we update on the current status in view of the start of astrometric science operation with PRIMA.
To enable optical long baseline interferometry toward faint objects, long integrations are necessary despite atmospheric turbulence. Fringe trackers are needed to stabilize the fringes and thus increase the fringe visibility and phase signal-to-noise ratio (SNR), with efficient controllers robust to instrumental vibrations, and to subsequent path fluctuations and flux drop-outs. We report on simulations, analysis and comparison of the performances of a classical integrator controller and of a Kalman controller, both optimized to track fringes under realistic observing conditions for different source magnitudes, disturbance conditions, and sampling frequencies. The key parameters of our simulations (instrument photometric performance, detection noise, turbulence and vibrations statistics) are based on typical observing conditions at the Very Large Telescope observatory and on the design of the GRAVITY instrument, a 4-telescope single-mode long baseline interferometer in the near-infrared, next in line to be installed at VLT Interferometer. We find that both controller performances follow a two-regime law with the star magnitude, a constant disturbance limited regime, and a diverging detector and photon noise limited regime. Moreover, we find that the Kalman controller is optimal in the high and medium SNR regime due to its predictive commands based on an accurate disturbance model. In the low SNR regime, the model is not accurate enough to be more robust than an integrator controller. Identifying the disturbances from high SNR measurements improves the Kalman performances in case of strong optical path difference disturbances.
The Fringe Sensor Unit (FSU) is the central element of the Phase Referenced Imaging and Micro-arcsecond Astrometry (PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase referenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and successfully servoed the fringe tracking loop during the initial commissioning phase. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time estimates of fringe phase after spatial filtering. A R=20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The FSU was integrated and aligned at the VLTI in summer 2008. It yields phase and group delay measurements at sampling rates up to 2 kHz, which are used to drive the fringe tracking control loop. During the first commissioning runs, the FSU was used to track the fringes of stars with K-band magnitudes as faint as m_K=9.0, using two VLTI Auxiliary Telescopes (AT) and baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) Unit Telescopes (UT) was demonstrated. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is of fundamental importance to achieve the scientific objectives of PRIMA.
We are developing a stable and precise spectrograph for the Large Binocular Telescope (LBT) named iLocater. The instrument comprises three principal components: a cross-dispersed echelle spectrograph that operates in the YJ-bands (0.97-1.30 microns), a fiber-injection acquisition camera system, and a wavelength calibration unit. iLocater will deliver high spectral resolution (R~150,000-240,000) measurements that permit novel studies of stellar and substellar objects in the solar neighborhood including extrasolar planets. Unlike previous planet-finding instruments, which are seeing-limited, iLocater operates at the diffraction limit and uses single mode fibers to eliminate the effects of modal noise entirely. By receiving starlight from two 8.4m diameter telescopes that each use extreme adaptive optics (AO), iLocater shows promise to overcome the limitations that prevent existing instruments from generating sub-meter-per-second radial velocity (RV) precision. Although optimized for the characterization of low-mass planets using the Doppler technique, iLocater will also advance areas of research that involve crowded fields, line-blanketing, and weak absorption lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا