ﻻ يوجد ملخص باللغة العربية
We investigate revenue guarantees for auction mechanisms in a model where a distribution is specified for each bidder, but only some of the distributions are correct. The subset of bidders whose distribution is correctly specified (henceforth, the green bidders) is unknown to the auctioneer. The question we address is whether the auctioneer can run a mechanism that is guaranteed to obtain at least as much revenue, in expectation, as would be obtained by running an optimal mechanism on the green bidders only. For single-parameter feasibility environments, we find that the answer depends on the feasibility constraint. For matroid environments, running the optimal mechanism using all the specified distributions (including the incorrect ones) guarantees at least as much revenue in expectation as running the optimal mechanism on the green bidders. For any feasibility constraint that is not a matroid, there exists a way of setting the specified distributions and the true distributions such that the opposite conclusion holds.
In markets such as digital advertising auctions, bidders want to maximize value rather than payoff. This is different to the utility functions typically assumed in auction theory and leads to different strategies and outcomes. We refer to bidders who
Classic mechanism design often assumes that a bidders action is restricted to report a type or a signal, possibly untruthfully. In todays digital economy, bidders are holding increasing amount of private information about the auctioned items. And due
We analyze the revenue loss due to market shrinkage. Specifically, consider a simple market with one item for sale and $n$ bidders whose values are drawn from some joint distribution. Suppose that the market shrinks as a single bidder retires from th
We study the problem of selling a good to a group of bidders with interdependent values in a prior-free setting. Each bidder has a signal that can take one of $k$ different values, and her value for the good is a weakly increasing function of all the
Consider a monopolist selling $n$ items to an additive buyer whose item values are drawn from independent distributions $F_1,F_2,ldots,F_n$ possibly having unbounded support. Unlike in the single-item case, it is well known that the revenue-optimal s