ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimating survival probability using the terrestrial extinction history for the search for extraterrestrial life

87   0   0.0 ( 0 )
 نشر من قبل Kohji Tsumura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kohji Tsumura




اسأل ChatGPT حول البحث

Several exoplanets have been discovered to date, and the next step is the search for extraterrestrial life. However, it is difficult to estimate the number of life-bearing exoplanets because our only template is based on life on Earth. In this paper, a new approach is introduced to estimate the probability that life on Earth has survived from birth to the present based on its terrestrial extinction history. A histogram of the extinction intensity during the Phanerozoic Eon is modeled effectively with a log-normal function, supporting the idea that terrestrial extinction is a random multiplicative process. Assuming that the fitted function is a probability density function of extinction intensity per unit time, the estimated survival probability of life on Earth is ~0.15 from the beginning of life to the present. This value can be a constraint on $f_i$ in the Drake equation, which contributes to estimating the number of life-bearing exoplanets.

قيم البحث

اقرأ أيضاً

71 - Jason T. Wright 2021
As a guide for astronomers new to the field of technosignature search (i.e. SETI), I present an overview of some of its observational and theoretical approaches. I review some of the various observational search strategies for SETI, focusing not on t he variety of technosignatures that have been proposed or which are most likely to be found, but on the underlying philosophies that motivate searches for them. I cover passive versus active searches, ambiguous versus dispositive kinds of technosignatures, commensal or archival searches versus dedicated ones, communicative signals versus artifacts, active versus derelict technologies, searches for beacons versus eavesdropping, and model-based versus anomaly-based searches. I also attempt to roughly map the landscape of technosignatures by kind and the scale over which they appear. I also discuss the importance of setting upper limits in SETI, and offer a heuristic for how to do so in a generic SETI search. I mention and attempt to dispel several misconceptions about the field. I conclude with some personal observations and recommendations for how to practice SETI, including how to choose good theory projects, how to work with experts and skeptics to improve ones search, and how to plan for success.
We present a cosmic perspective on the search for life and examine the likely number of Communicating Extra-Terrestrial Intelligent civilizations (CETI) in our Galaxy by utilizing the latest astrophysical information. Our calculation involves Galacti c star-formation histories, metallicity distributions, and the likelihood of stars hosting Earth-like planets in Habitable Zones, under specific assumptions which we describe as the Astrobiological Copernican Weak and Strong conditions. These assumptions are based on the one situation in which intelligent, communicative life is known to exist - on our own planet. This type of life has developed in a metal-rich environment and has taken roughly 5 Gyr to do so. We investigate the possible number of CETI based on different scenarios. At one extreme is the Weak Astrobiological Copernican principle - such that a planet forms intelligent life sometime after 5 Gyr, but not earlier. The other is the Strong Condition in which life must form between 4.5 to 5.5 Gyr, as on Earth. In the Strong Condition (a strict set of assumptions), there should be at least 36$_{-32}^{+175}$ civilizations within our Galaxy: this is a lower limit, based on the assumption that the average life-time, L, of a communicating civilization is 100 years (based on our own at present). If spread uniformly throughout the Galaxy this would imply that the nearest CETI is at most 17000$_{-10000}^{+33600}$ light-years away, and most likely hosted by a low-mass M-dwarf star, far surpassing our ability to detect it for the foreseeable future. Furthermore, the likelihood that the host stars for this life are solar-type stars is extremely small and most would have to be M-dwarfs, which may not be stable enough to host life over long timescales. We furthermore explore other scenarios and explain the likely number of CETI there are within our Galaxy based on variations of our assumptions.
Exoplanet observations promise one day to unveil the presence of extraterrestrial life. Atmospheric compounds in strong chemical disequilibrium would point to large-scale biological activity just as oxygen and methane do in the Earths atmosphere. The cancellation of both the Terrestrial Planet Finder and Darwin missions means that it is unlikely that a dedicated space telescope to search for biomarker gases in exoplanet atmospheres will be launched within the next 25 years. Here we show that ground-based telescopes provide a strong alternative for finding biomarkers in exoplanet atmospheres through transit observations. Recent results on hot Jupiters show the enormous potential of high-dispersion spectroscopy to separate the extraterrestrial and telluric signals making use of the Doppler shift of the planet. The transmission signal of oxygen from an Earth-twin orbiting a small red dwarf star is only a factor 3 smaller than that of carbon monoxide recently detected in the hot Jupiter tau Bootis b, albeit such a star will be orders of magnitude fainter. We show that if Earth-like planets are common, the planned extremely large telescopes can detect oxygen within a few dozen transits. Ultimately, large arrays of dedicated flux collector telescopes equipped with high-dispersion spectrographs can provide the large collecting area needed to perform a statistical study of life-bearing planets in the solar neighborhood.
Over 300 extrasolar planets (exoplanets) have been detected orbiting nearby stars. We now hope to conduct a census of all planets around nearby stars and to characterize their atmospheres and surfaces with spectroscopy. Rocky planets within their sta rs habitable zones have the highest priority, as these have the potential to harbor life. Our science goal is to find and characterize all nearby exoplanets; this requires that we measure the mass, orbit, and spectroscopic signature of each one at visible and infrared wavelengths. The techniques for doing this are at hand today. Within the decade we could answer long-standing questions about the evolution and nature of other planetary systems, and we could search for clues as to whether life exists elsewhere in our galactic neighborhood.
The discovery of the ubiquity of habitable extrasolar planets, combined with revolutionary advances in instrumentation and observational capabilities, have ushered in a renaissance in the millenia-old quest to answer our most profound question about the Universe and our place within it - Are we alone? The Breakthrough Listen Initiative, announced in July 2015 as a 10-year 100M USD program, is the most comprehensive effort in history to quantify the distribution of advanced, technologically capable life in the universe. In this white paper, we outline the status of the on-going observing campaign with our primary observing facilities, as well as planned activities with these instruments over the next few years. We also list collaborative facilities which will conduct searches for technosignatures in either primary observing mode, or commensally. We highlight some of the novel analysis techniques we are bringing to bear on multi-petabyte data sets, including machine learning tools we are deploying to search for a broader range of technosignatures than was previously possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا