ترغب بنشر مسار تعليمي؟ اضغط هنا

The spring bounces back: Introducing the Strain Elevation Tension Spring embedding algorithm for network representation

47   0   0.0 ( 0 )
 نشر من قبل Jonathan Bourne
 تاريخ النشر 2020
والبحث باللغة English
 تأليف Jonathan Bourne




اسأل ChatGPT حول البحث

This paper introduces the Strain Elevation Tension Spring embedding (SETSe) algorithm, a graph embedding method that uses a physics model to create node and edge embeddings in undirected attribute networks. Using a low-dimensional representation, SETSe is able to differentiate between graphs that are designed to appear identical using standard network metrics such as number of nodes, number of edges and assortativity. The embeddings generated position the nodes such that sub-classes, hidden during the embedding process, are linearly separable, due to the way they connect to the rest of the network. SETSe outperforms five other common graph embedding methods on both graph differentiation and sub-class identification. The technique is applied to social network data, showing its advantages over assortativity as well as SETSes ability to quantify network structure and predict node type. The algorithm has a convergence complexity of around $mathcal{O}(n^2)$, and the iteration speed is linear ($mathcal{O}(n)$), as is memory complexity. Overall, SETSe is a fast, flexible framework for a variety of network and graph tasks, providing analytical insight and simple visualisation for complex systems.



قيم البحث

اقرأ أيضاً

Neural node embeddings have recently emerged as a powerful representation for supervised learning tasks involving graph-structured data. We leverage this recent advance to develop a novel algorithm for unsupervised community discovery in graphs. Thro ugh extensive experimental studies on simulated and real-world data, we demonstrate that the proposed approach consistently improves over the current state-of-the-art. Specifically, our approach empirically attains the information-theoretic limits for community recovery under the benchmark Stochastic Block Models for graph generation and exhibits better stability and accuracy over both Spectral Clustering and Acyclic Belief Propagation in the community recovery limits.
89 - Yao Ma 2017
Networks such as social networks, airplane networks, and citation networks are ubiquitous. The adjacency matrix is often adopted to represent a network, which is usually high dimensional and sparse. However, to apply advanced machine learning algorit hms to network data, low-dimensional and continuous representations are desired. To achieve this goal, many network embedding methods have been proposed recently. The majority of existing methods facilitate the local information i.e. local connections between nodes, to learn the representations, while completely neglecting global information (or node status), which has been proven to boost numerous network mining tasks such as link prediction and social recommendation. Hence, it also has potential to advance network embedding. In this paper, we study the problem of preserving local and global information for network embedding. In particular, we introduce an approach to capture global information and propose a network embedding framework LOG, which can coherently model {bf LO}cal and {bf G}lobal information. Experimental results demonstrate the ability to preserve global information of the proposed framework. Further experiments are conducted to demonstrate the effectiveness of learned representations of the proposed framework.
Considering the wide application of network embedding methods in graph data mining, inspired by the adversarial attack in deep learning, this paper proposes a Genetic Algorithm (GA) based Euclidean Distance Attack strategy (EDA) to attack the network embedding, so as to prevent certain structural information from being discovered. EDA focuses on disturbing the Euclidean distance between a pair of nodes in the embedding space as much as possible through minimal modifications of the network structure. Since a large number of downstream network algorithms, such as community detection and node classification, rely on the Euclidean distance between nodes to evaluate the similarity between them in the embedding space, EDA can be considered as a universal attack on a variety of network algorithms. Different from traditional supervised attack strategies, EDA does not need labeling information, and, in other words, is an unsupervised network embedding attack method.
83 - Haoye Lu , Amiya Nayak 2018
Network structures, consisting of nodes and edges, have applications in almost all subjects. A set of nodes is called a community if the nodes have strong interrelations. Industries (including cell phone carriers and online social media companies) ne ed community structures to allocate network resources and provide proper and accurate services. However, all the current detection algorithms are motivated by the practical problems, whose applicabilities in other fields are open to question. Thence, for a new community problem, researchers need to derive algorithms ad hoc, which is arduous and even unnecessary. In this paper, we represent a general procedure to find community structures in practice. We mainly focus on two typical types of networks: transmission networks and similarity networks. We reduce them to a unified graph model, based on which we propose a general method to define and detect communities. Readers can specialize our general algorithm to accommodate their problems. In the end, we also give a demonstration to show how the algorithm works.
We present a modified version of the nudged elastic band (NEB) algorithm to find minimum energy paths con-necting two known configurations. We show that replacing the harmonic band-energy term with a discretized version of the Onsager-Machlup action leads to a NEB algorithm with adaptive spring lengths that automatically increase the resolution of the minimum energy path around the saddle point of the potential energy surface. The method has the same computational cost per optimization step of the standard NEB algorithm and does not introduce additional parameters. We present applications to the isomerization of alanine dipeptide, the elimination of hydrogen from ethane and the healing of a 5-77-5 defect in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا