ﻻ يوجد ملخص باللغة العربية
One-dimensional (1D) metallic mirror-twin boundaries (MTBs) in monolayer transition metal dichalcogenides (TMDCs) exhibit a periodic charge modulation and provide an ideal platform for exploring collective electron behavior in the confined system. The underlying mechanism of the charge modulation and how the electrons travel in 1D structures remain controversial. Here, for the first time, we observed atomic-scale structures of the charge distribution within one period in MTB of monolayer MoTe2 by using scanning tunneling microscopy/spectroscopy (STM/STS). The coexisting apparent periodic lattice distortions and U-shaped energy gap clearly demonstrate a Peierls-type charge density wave (CDW). Equidistant quantized energy levels with varied periodicity are further discovered outside the CDW gap along the metallic MTB. Density functional theory (DFT) calculations are in good agreement with the gapped electronic structures and reveal they originate mainly from Mo 4d orbital. Our work presents hallmark evidence of the 1D Peierls-type CDW on the metallic MTBs and offers opportunities to study the underlying physics of 1D charge modulation.
Materials with reduced dimensionality often exhibit exceptional properties that are different from their bulk counterparts. Here we report the emergence of a commensurate 2 $times$ 2 charge density wave (CDW) in monolayer and bilayer SnSe$_2$ films b
Properties of two-dimensional transition metal dichalcogenides are highly sensitive to the presence of defects in the crystal structure. A detailed understanding of defect structure may lead to control of material properties through defect engineerin
We report experimental evidence of charge density wave (CDW) transition in monolayer 1T-VTe$_2$ film. 4$times$4 reconstruction peaks are observed by low energy electron diffraction below the transition temperature $T_{CDW}$ = 186 K. Angle-resolved ph
Despite the progress made in successful prediction of many classes of weakly-correlated topological materials, it is not clear how a topological order can emerge from interacting orders and whether or not a charge ordered topological state can exist
We use Density Matrix Renormalization Group to study a one-dimensional chain with Peierls electron-phonon coupling describing the modulation of the electron hopping due to lattice distortion. We demonstrate the appearance of an exotic phase-separated