ﻻ يوجد ملخص باللغة العربية
Functional and effective networks inferred from time series are at the core of network neuroscience. Interpreting their properties requires inferred network models to reflect key underlying structural features; however, even a few spurious links can distort network measures, challenging functional connectomes. We study the extent to which micro- and macroscopic properties of underlying networks can be inferred by algorithms based on mutual information and bivariate/multivariate transfer entropy. The validation is performed on two macaque connectomes and on synthetic networks with various topologies (regular lattice, small-world, random, scale-free, modular). Simulations are based on a neural mass model and on autoregressive dynamics (employing Gaussian estimators for direct comparison to functional connectivity and Granger causality). We find that multivariate transfer entropy captures key properties of all networks for longer time series. Bivariate methods can achieve higher recall (sensitivity) for shorter time series but are unable to control false positives (lower specificity) as available data increases. This leads to overestimated clustering, small-world, and rich-club coefficients, underestimated shortest path lengths and hub centrality, and fattened degree distribution tails. Caution should therefore be used when interpreting network properties of functional connectomes obtained via correlation or pairwise statistical dependence measures, rather than more holistic (yet data-hungry) multivariate models.
Network inference algorithms are valuable tools for the study of large-scale neuroimaging datasets. Multivariate transfer entropy is well suited for this task, being a model-free measure that captures nonlinear and lagged dependencies between time se
We propose a new estimator to measure directed dependencies in time series. The dimensionality of data is first reduced using a new non-uniform embedding technique, where the variables are ranked according to a weighted sum of the amount of new infor
Functional protein-protein interactions are crucial in most cellular processes. They enable multi-protein complexes to assemble and to remain stable, and they allow signal transduction in various pathways. Functional interactions between proteins res
Natural and social multivariate systems are commonly studied through sets of simultaneous and time-spaced measurements of the observables that drive their dynamics, i.e., through sets of time series. Typically, this is done via hypothesis testing: th
We study the optimality conditions of information transfer in systems with memory in the low signal-to-noise ratio regime of vanishing input amplitude. We find that the optimal mutual information is represented by a maximum-variance of the signal tim