ترغب بنشر مسار تعليمي؟ اضغط هنا

The $-12$ mag dip in the galaxy luminosity function of Hickson Compact Groups

142   0   0.0 ( 0 )
 نشر من قبل Hitomi Yamanoi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the galaxy luminosity functions (LFs) of four Hickson Compact Groups using image data from the Subaru Hyper Suprime-Cam. A distinct dip appeared in the faint-ends of all the LFs at $M_gsim-12$. A similar dip was observed in the LFs of the galaxy clusters Coma and Centaurus. However, LFs in the Virgo, Hydra, and the field had flatter slopes and no dips. As the relative velocities among galaxies are lower in compact groups than in clusters, the effect of galaxy-galaxy interactions would be more significant in compact groups. The $M_gsim-12$ dip of compact groups may imply that frequent galaxy-galaxy interactions would affect the evolution of galaxies, and the dip in LF could become a boundary between different galaxy populations.

قيم البحث

اقرأ أيضاً

101 - Noah Brosch 2015
I present observations of the Hickson Compact Group 88 (HCG88) obtained during the commissioning of a new 28-inch telescope at the Wise Observatory. This galaxy group was advertised to be non-interacting, or to be in a very early interaction stage, b ut this is not the case. The observations reported here were done using a luminance filter, essentially a very broad R filter, reaching a low surface brightness level of about 26 mag per square arcsec. Additional observations were obtained in a narrow spectral band approximately centered on the rest-frame H-alpha line from the group. Contrary to previous studies, my observations show that at least two of the major galaxies have had significant interactions in the past, although probably not between themselves. I report the discovery of a faint extended tail emerging from the brightest of the group galaxies, severe isophote twisting and possible outer shells around another galaxy, and map the HII regions in all the galaxies.
This study presents the mass distribution for a sample of 18 late-type galaxies in nine Hickson Compact Groups. We used rotation curves from high resolution 2D velocity fields of Fabry-Perot observations and J-band photometry from the 2MASS survey, i n order to determine the dark halo and the visible matter distributions. The study compares two halo density profile, an isothermal core-like distribution and a cuspy one. We also compare their visible and dark matter distributions with those of galaxies belonging to cluster and field galaxies coming from two samples: 40 cluster galaxies of Barnes et al (2004) and 35 field galaxies of Spano et al. (2008). The central halo surface density is found to be constant with respect to the total absolute magnitude similar to what is found for the isolated galaxies. This suggests that the halo density is independent to galaxy type and environment. We have found that core-like density profiles fit better the rotation curves than cuspy-like ones. No major differences have been found between field, cluster and compact group galaxies with respect to their dark halo density profiles.
We present 21cm HI observations of four Hickson Compact Groups with evidence for a substantial intragroup medium using the Robert C. Byrd Green Bank Telescope (GBT). By mapping H I emission in a region of 25$^{prime}times$25$^{prime}$ (140-650 kpc) s urrounding each HCG, these observations provide better estimates of HI masses. In particular, we detected 65% more HI than that detected in the Karl G. Jansky Very Large Array (VLA) imaging of HCG92. We also identify if the diffuse gas has the same spatial distribution as the high-surface brightness (HSB) HI features detected in the VLA maps of these groups by comparing the HI strengths between the observed and modeled masses based on VLA maps. We found that the HI observed with the GBT to have a similar spatial distribution as the HSB structures in HCGs 31 and 68. Conversely, the observed HI distributions in HCGs44 and 92 were extended and showed significant offsets from the modeled masses. Most of the faint gas in HCG44 lies to the Northeast-Southwest region and in HCG 92 lies in the Northwest region of their respective groups. The spatial and dynamical similarities between the total (faint+HSB) and the HSB HI indicate that the faint gas is of tidal origin. We found that the gas will survive ionization by the cosmic UV background and the escaping ionizing photons from the star forming regions and stay primarily neutral for at least 500 Myrs.
72 - Dominik Bomans 2006
We observed 5 Hickson Compact Groups with the ESO/MPI 2.2m telescope and WFI to investigate the dwarf galaxy content and distribution in these galaxy groups. Our deep imaging and careful selection of the candidate galaxies revealed a rich population of mainly passively evolving dwarf galaxies, which is spatially much more extended than the originally defined Hickson Compact groups. The composite luminosity function of the 5 groups shows a bimodal structure with a very steep rise in the low luminosity regime. The faint end slope is close to the predictions of CDM theory for the slope of the Dark Matter halo mass function.
Isolated compact groups of galaxies (CGs) present a range of dynamical states, group velocity dispersions, and galaxy morphologies with which to study galaxy evolution, particularly the properties of gas both within the galaxies and in the intragroup medium. As part of a large, multiwavelength examination of CGs, we present an archival study of diffuse X-ray emission in a subset of nine Hickson compact groups observed with the Chandra X-ray Observatory. We find that seven of the groups in our sample exhibit detectable diffuse emission. However, unlike large-scale emission in galaxy clusters, the diffuse features in the majority of the detected groups are linked to the individual galaxies, in the form of both plumes and halos likely as a result of star formation or AGN activity, as well as in emission from tidal features. Unlike previous studies from earlier X-ray missions, HCGs 31, 42, 59, and 92 are found to be consistent with the Lx-T relationship from clusters within the errors, while HCGs 16 and 31 are consistent with the cluster Lx-sigma relation, though this is likely coincidental given that the hot gas in these two systems is largely due to star formation. We find that Lx increases with decreasing group HI to dynamical-mass ratio with tentative evidence for a dependance in X-ray luminosity on HI morphology whereby systems with intragroup HI indicative of strong interactions are considerably more X-ray luminous than passively evolving groups. We also find a gap in the Lx of groups as a function of the total group specific star formation rate. Our findings suggest that the hot gas in these groups is not in hydrostatic equilibrium and these systems are not low-mass analogs of rich groups or clusters, with the possible exception of HCG 62.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا