ترغب بنشر مسار تعليمي؟ اضغط هنا

The GAPS Programme at TNG -- XXV. Stellar atmospheric parameters and chemical composition through GIARPS optical and near-infrared spectra

120   0   0.0 ( 0 )
 نشر من قبل Martina Baratella
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detailed chemical composition of stars is important in many astrophysical fields, among which the characterisation of exoplanetary systems. Previous studies seem to indicate an anomalous chemical pattern of the youngest stellar population in the solar vicinity with a sub-solar metal content. This can influence various observational relations linking the properties of exoplanets to the characteristics of the host stars, for example the giant planet-metallicity relation. In this framework, we aim to expand our knowledge of the chemical composition of intermediate-age stars and understand whether these peculiarities are real or related to spectroscopic analysis techniques. We analysed high-resolution optical and near-infrared GIARPS spectra of intermediate-age stars (< 700Myr). To overcome issues related to the young ages of the stars, we applied a new spectroscopic method that uses titanium lines to derive the atmospheric parameters, in particular surface gravities and microturbulence velocity parameter. We also derived abundances of 14 different atomic species. The lack of systematic trends between elemental abundances and effective temperatures validates our method. However, we observed that the coolest (<5400 K) stars in the sample, display higher abundances for the Cr II, and for high-excitation potential C I lines. We found a positive correlation between the higher abundances measured of C I and Cr II and the activity index logR$_{HK}$. Instead, we found no correlations between the C abundances obtained from CH molecular band at 4300AA, and both effective temperatures and activity. Thus, we suggest that these are better estimates for C abundances in young and cool stars. Finally, we found an indication of an increasing abundance ratio [X/H] with the condensation temperature for HD167389, indicating possible episodes of planet engulfment.

قيم البحث

اقرأ أيضاً

We have obtained low-resolution optical (0.7-0.98 micron) and near-infrared (1.11-1.34 micron and 0.8-2.5 micron) spectra of twelve isolated planetary-mass candidates (J = 18.2-19.9 mag) of the 3-Myr sigma Orionis star cluster with a view to determin ing the spectroscopic properties of very young, substellar dwarfs and assembling a complete cluster mass function. We have classified our targets by visual comparison with high- and low-gravity standards and by measuring newly defined spectroscopic indices. We derived L0-L4.5 and M9-L2.5 using high- and low-gravity standards, respectively. Our targets reveal clear signposts of youth, thus corroborating their cluster membership and planetary masses (6-13 Mjup). These observations complete the sigma Orionis mass function by spectroscopically confirming the planetary-mass domain to a confidence level of $sim$75 percent. The comparison of our spectra with BT-Settl solar metallicity model atmospheres yields a temperature scale of 2350-1800 K and a low surface gravity of log g ~ 4.0 [cm/s2], as would be expected for young planetary-mass objects. We discuss the properties of the cluster least-massive population as a function of spectral type. We have also obtained the first optical spectrum of S Ori 70, a T dwarf in the direction of sigma Orionis. Our data provide reference optical and near-infrared spectra of very young L dwarfs and a mass function that may be used as templates for future studies of low-mass substellar objects and exoplanets. The extrapolation of the sigma Orionis mass function to the solar neighborhood may indicate that isolated planetary-mass objects with temperatures of 200-300 K and masses in the interval 6-13-Mjup may be as numerous as very low-mass stars.
The HARPS/HARPS-N Data Reduction Software (DRS) relies on the cross-correlation between the observed spectra and a suitable stellar mask to compute a cross-correlation function (CCF) to be used both for the radial velocity (RV) computation and as an indicator of stellar lines asymmetry, induced for example by the stellar activity. Unfortunately the M2 mask currently used by the HARPS/HARPS-N DRS for M-type stars results in heavily distorted CCFs. We created several new stellar masks in order to decrease the errors in the RVs and to improve the reliability of the activity indicators as the bisectors span. We obtained very good results with a stellar mask created from the theoretical line list provided by the VALD3 database for an early M-type star (T$_{mathrm{eff}}$=3500~K and $log{g}=4.5$). The CCFs shape and relative activity indicators improved and the RV time-series allowed us to recover known exoplanets with periods and amplitudes compatible with the results obtained with HARPS-TERRA.
83 - M. Rainer , F. Borsa , L. Pino 2021
Transiting ultra-hot Jupiters are ideal candidates to study the exoplanet atmospheres and their dynamics, particularly by means of high-resolution, high signal-to-noise ratio spectra. One such object is KELT-20b, orbiting the fast rotating A2-type st ar KELT-20. Many atomic species have already been found in its atmosphere, with blueshifted signals that hints at the presence of a day-to-night side wind. We aimed to observe the atmospheric Rossiter-McLaughlin effect in the ultra-hot Jupiter KELT-20b, and to study any variation of the atmospheric signal during the transit. For this purpose, we analysed five nights of HARPS-N spectra covering five transits of KELT-20b. We computed the mean line profiles of the spectra with a least-squares deconvolution, and then we extracted the stellar radial velocities by fitting them with a rotational broadening profile in order to obtain the radial velocity time-series. We used the mean line profile residuals tomography to analyse the planetary atmospheric signal and its variations. We also used the cross-correlation method to study an already known double-peak feature in the FeI planetary signal. We observed both the classical and the atmospheric Rossiter-McLaughlin effect in the radial velocity time-series. The latter gave us an estimate of the radius of the planetary atmosphere that correlates with the stellar mask used in our work: R(p+atmo)/Rp = 1.13 +/- 0.02). We isolated the planetary atmospheric trace in the tomography, and we found radial velocity variations of the planetary atmospheric signal during transit with an overall blueshift of approximatively 10 km/s, along with small variations in the signals depth and, less significant, in the full width at half maximum (FWHM). We also find a possible variation in the structure and position of FeI signal in different transits.
In the framework of the GAPS project, we observed the planet-hosting star KELT-9 (A-type star, VsinI$sim$110 km/s) with the HARPS-N spectrograph at the TNG. In this work we analyse the spectra and the extracted radial velocities (RVs), to constrain t he physical parameters of the system and to detect the planetary atmosphere of KELT-9b. We extracted from the high-resolution optical spectra the mean stellar line profiles with an analysis based on the Least Square Deconvolution technique. Then, we computed the stellar RVs with a method optimized for fast rotators, by fitting the mean stellar line profile with a purely rotational profile instead of using a Gaussian function. The new spectra and analysis led us to update the orbital and physical parameters of the system, improving in particular the value of the planetary mass to $M_{rm p}=2.88pm0.35,M_{rm Jup}$. We discovered an anomalous in-transit RV deviation from the theoretical Rossiter-McLaughlin effect solution, calculated from the projected spin-orbit angle $lambda=-85.78pm0.46$ degrees measured with Doppler tomography. We prove that this deviation is caused by the planetary atmosphere of KELT-9b, thus we name this effect Atmospheric Rossiter-McLaughlin effect. By analysing the magnitude of the RV anomaly, we obtained information on the extension of the planetary atmosphere as weighted by the model used to retrieve the stellar mean line profiles, which is up to $1.22pm0.02,R_{rm p}$. The Atmospheric Rossiter-McLaughlin effect will be observable for other exoplanets whose atmosphere has non-negligible correlation with the stellar mask used to retrieve the RVs, in particular ultra-hot Jupiters with iron in their atmosphere. The duration and amplitude of the effect will depend not only on the extension of the atmosphere, but also on the in-transit planetary RVs and on the projected rotational velocity of the parent star.
With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-s table, double-channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters ($T_{rm eff}$, $log{g}$, $xi$, and [Fe/H]) by means of the StePar code, a Python implementation of the equivalent width method that employs the 2017 version of the MOOG code and a grid of MARCS model atmospheres. We compiled four Fe I and Fe II line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17100 angstroms, thus substantially increasing the number of identified Fe I and Fe II lines up to 653 and 23, respectively. We examined the impact of the near-infrared Fe I and Fe II lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 $Gaia$ benchmark stars contained in our sample. Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fe I and Fe II lines when the near-infrared region is taken into account reveals a deeper $T_{rm eff}$ scale that might stem from a higher sensitivity of the near-infrared lines to $T_{rm eff}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا