ترغب بنشر مسار تعليمي؟ اضغط هنا

New Probes of Large Scale Structure

74   0   0.0 ( 0 )
 نشر من قبل Peikai Li
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the second paper in a series where we propose a method of indirectly measuring large scale structure using information from small scale perturbations. The idea is to build a quadratic estimator from small scale modes that provides a map of structure on large scales. We demonstrated in the first paper that the quadratic estimator works well on a dark-matter-only N-body simulation at a snapshot of $z=0$. Here we generalize the theory to the case of a light cone halo catalog with a non-cubic region taken into consideration. We successfully apply the generalized version of the quadratic estimator to the light cone halo catalog based on an N-body simulation of volume $sim15.03,(h^{-1},rm Gpc)^3$. The most distant point in the light cone is at a redshift of $1.42$, indicating the applicability of our method to next generation of galaxy surveys.



قيم البحث

اقرأ أيضاً

We present constraints on Horndeski gravity from a combined analysis of cosmic shear, galaxy-galaxy lensing and galaxy clustering from $450,mathrm{deg}^2$ of the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey. The Horndeski class of dark energy/modified gravity models includes the majority of universally coupled extensions to $Lambda$CDM with one scalar field in addition to the metric. We study the functions of time that fully describe the evolution of linear perturbations in Horndeski gravity. Our results are compatible throughout with a $Lambda$CDM model. By imposing gravitational wave constraints, we fix the tensor speed excess to zero and consider a subset of models including e.g. quintessence and $f(R)$ theories. Assuming proportionality of the Horndeski functions $alpha_B$ and $alpha_M$ (kinetic braiding and the Planck mass run rate, respectively) to the dark energy density fraction $Omega_{mathrm{DE}}(a) = 1 - Omega_{mathrm{m}}(a)$, we find for the proportionality coefficients $hat{alpha}_B = 0.20_{-0.33}^{+0.20} ,$ and $, hat{alpha}_M = 0.25_{-0.29}^{+0.19}$. Our value of $S_8 equiv sigma_8 sqrt{Omega_{mathrm{m}}/0.3}$ is in better agreement with the $Planck$ estimate when measured in the enlarged Horndeski parameter space than in a pure $Lambda$CDM scenario. In our joint three-probe analysis we report a downward shift of the $S_8$ best fit value from the $Planck$ measurement of $Delta S_8 = 0.016_{-0.046}^{+0.048}$ in Horndeski gravity, compared to $Delta S_8 = 0.059_{-0.039}^{+0.040}$ in $Lambda$CDM. Our constraints are robust to the modelling uncertainty of the non-linear matter power spectrum in Horndeski gravity. Our likelihood code for multi-probe analysis in both $Lambda$CDM and Horndeski gravity is publicly available at http://github.com/alessiospuriomancini/KiDSHorndeski .
We present a new method to identify large scale filaments and apply it to a cosmological simulation. Using positions of haloes above a given mass as node tracers, we look for filaments between them using the positions and masses of all the remaining dark-matter haloes. In order to detect a filament, the first step consists in the construction of a backbone linking two nodes, which is given by a skeleton-like path connecting the highest local dark matter (DM) density traced by non-node haloes. The filament quality is defined by a density and gap parameters characterising its skeleton, and filament members are selected by their binding energy in the plane perpendicular to the filament. This membership condition is associated to characteristic orbital times; however if one assumes a fixed orbital timescale for all the filaments, the resulting filament properties show only marginal changes, indicating that the use of dynamical information is not critical for the method. We test the method in the simulation using massive haloes($M>10^{14}$h$^{-1}M_{odot}$) as filament nodes. The main properties of the resulting high-quality filaments (which corresponds to $simeq33%$ of the detected filaments) are, i) their lengths cover a wide range of values of up to $150 $h$^{-1}$Mpc, but are mostly concentrated below 50h$^{-1}$Mpc; ii) their distribution of thickness peaks at $d=3.0$h$^{-1}$Mpc and increases slightly with the filament length; iii) their nodes are connected on average to $1.87pm0.18$ filaments for $simeq 10^{14.1}M_{odot}$ nodes; this number increases with the node mass to $simeq 2.49pm0.28$ filaments for $simeq 10^{14.9}M_{odot}$ nodes.
The next generation of galaxy surveys like the Dark Energy Spectroscopic Instrument (DESI) and Euclid will provide datasets orders of magnitude larger than anything available to date. Our ability to model nonlinear effects in late time matter perturb ations will be a key to unlock the full potential of these datasets, and the area of initial condition reconstruction is attracting growing attention. Iterative reconstruction developed in Ref. [1] is a technique designed to reconstruct the displacement field from the observed galaxy distribution. The nonlinear displacement field and initial linear density field are highly correlated. Therefore, reconstructing the nonlinear displacement field enables us to extract the primordial cosmological information better than from the late time density field at the level of the two-point statistics. This paper will test to what extent the iterative reconstruction can recover the true displacement field and construct a perturbation theory model for the postreconstructed field. We model the iterative reconstruction process with Lagrangian perturbation theory~(LPT) up to third order for dark matter in real space and compare it with $N$-body simulations. We find that the simulated iterative reconstruction does not converge to the nonlinear displacement field, and the discrepancy mainly appears in the shift term, i.e., the term correlated directly with the linear density field. On the contrary, our 3LPT model predicts that the iterative reconstruction should converge to the nonlinear displacement field. We discuss the sources of discrepancy, including numerical noise/artifacts on small scales, and present an ad hoc phenomenological model that improves the agreement.
Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is charact erized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.
We study the interaction of an electrically charged component of the dark matter with a magnetized galactic interstellar medium (ISM) of (rotating) spiral galaxies. For the observed ordered component of the field, $Bsim mu$G, we find that the accumul ated Lorentz interactions between the charged particles and the ISM will extract an order unity fraction of the disk angular momentum over the few Gyr Galactic lifetime unless $q/e lesssim 10^{-13pm 1},m,c^2/$ GeV if all the dark matter is charged. The bound is weakened by factor $f_{rm qdm}^{-1/2}$ if only a mass fraction $f_{rm qdm}gtrsim0.13$ of the dark matter is charged. Here $q$ and $m$ are the dark matter particle mass and charge. If $f_{rm qdm}approx1$ this bound excludes charged dark matter produced via the freeze-in mechanism for $m lesssim$ TeV/$c^2$. This bound on $q/m$, obtained from Milky Way parameters, is rough and not based on any precise empirical test. However this bound is extremely strong and should motivate further work to better model the interaction of charged dark matter with ordered and disordered magnetic fields in galaxies and clusters of galaxies; to develop precise tests for the presence of charged dark matter based on better estimates of angular momentum exchange; and also to better understand how charged dark matter might modify the growth of magnetic fields, and the formation and interaction histories of galaxies, galaxy groups, and clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا