ﻻ يوجد ملخص باللغة العربية
We consider a dispersive equation of Schr{o}dinger type with a non-linearity slightly larger than cubic by a logarithmic factor. This equation is supposed to be an effective model for stable two dimensional quantum droplets with LHY correction. Mathematically, it is seen to be mass supercritical and energy subcritical with a sign-indefinite nonlinearity. For the corresponding initial value problem, we prove global in-time existence of strong solutions in the energy space. Furthermore, we prove the existence and uniqueness (up to symmetries) of nonlinear ground states and the orbital stability of the set of energy minimizers. We also show that for the corresponding model in 1D a stronger stability result is available.
We prove sharp $L^infty$ decay and modified scattering for a one-dimensional dispersion-managed cubic nonlinear Schrodinger equation with small initial data chosen from a weighted Sobolev space. Specifically, we work with an averaged version of the d
In this short note, we present a construction for the log-log blow up solutions to focusing mass-critical stochastic nonlinear Schroidnger equations with multiplicative noises. The solution is understood in the sense of controlled rough path as in cite{SZ20}.
In this article, we prove the scattering for the quintic defocusing nonlinear Schrodinger equation on cylinder $mathbb{R} times mathbb{T}$ in $H^1$. We establish an abstract linear profile decomposition in $L^2_x h^alpha$, $0 < alpha le 1$, motivated
The initial value problem for the $L^{2}$ critical semilinear Schrodinger equation in $R^n, n geq 3$ is considered. We show that the problem is globally well posed in $H^{s}({Bbb R^{n}})$ when $1>s>frac{sqrt{7}-1}{3}$ for $n=3$, and when $1>s> frac{-
We present a numerical study of solutions to the $2d$ focusing nonlinear Schrodinger equation in the exterior of a smooth, compact, strictly convex obstacle, with Dirichlet boundary conditions with cubic and quintic powers of nonlinearity. We study t