ﻻ يوجد ملخص باللغة العربية
We argue that accidental approximate scaling symmetries are robust predictions of weakly coupled string vacua, and show that their interplay with supersymmetry and other (generalised) internal symmetries underlies the ubiquitous appearance of no-scale supergravities in low-energy 4D EFTs. We identify 4 nested types of no-scale supergravities, and show how leading quantum corrections can break scale invariance while preserving some no-scale properties (including non-supersymmetric flat directions). We use these ideas to classify corrections to the low-energy 4D supergravity action in perturbative 10D string vacua, including both bulk and brane contributions. Our prediction for the Kahler potential at any fixed order in $alpha$ and string loops agrees with all extant calculations. p-form fields play two important roles: they spawn many (generalised) shift symmetries; and space-filling 4-forms teach 4D physics about higher-dimensional phenomena like flux quantisation. We argue that these robust symmetry arguments suffice to understand obstructions to finding classical de Sitter vacua, and suggest how to get around them in UV complete models.
No-scale supergravity is the appropriate general framework for low-energy effective field theories derived from string theory. The simplest no-scale Kahler potential with a single chiral field corresponds to a compactification to flat Minkowski space
A scale invariant Goldstino theory coupled to Supergravity is obtained as a standard supergravity dual of a rigidly scale invariant higher--curvature Supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a m
We review symmetries protecting a zero value for the cosmological constant in no--scale supergravity and reveal the connection between the Multiple Point Principle, no--scale and superstring inspired models.
In four spacetime dimensions, all ${cal N} =1$ supergravity-matter systems can be formulated in the so-called $mathsf{U}(1)$ superspace proposed by Howe in 1981. This paper is devoted to the study of those geometric structures which characterise a ba
The bosonic sector of various supergravity theories reduces to a homogeneous space G/H in three dimensions. The corresponding algebras g are simple for (half-)maximal supergravity, but can be semi-simple for other theories. We extend the existing lit