ترغب بنشر مسار تعليمي؟ اضغط هنا

Strange mesons in strong magnetic fields

96   0   0.0 ( 0 )
 نشر من قبل Amruta Mishra
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The masses of the strange mesons ($K$, $K^*$ and $phi$) are investigated in the presence of strong magnetic fields. The changes in the masses of these mesons arise from the mixing of the pseusdoscalar and vector mesons in the presence of a magnetic field. For the charged mesons, these mass modifications are in addition to the contributions from the lowest Landau energy levels to their masses. The decay widths, $phi rightarrow Kbar K$ and $K^* rightarrow Kpi$, in the presence of the magnetic field are studied using a field theoretic model of composite hadrons with constituent quarks/antiquarks. The model uses the free Dirac Hamiltonian in terms of the constituent quark fields as the light quark antiquark pair creation term and explicit constructions for the meson states in terms of the constituent quarks and anitiquarks to study the decay processes. The study of the masses and decay widths of the strange mesons in strong magnetic fields can have observable consequences on the production of the open and hidden strange mesons in the peripheral ultra high energy collisions at LHC, where the created magnetic field can be huge.



قيم البحث

اقرأ أيضاً

The in-medium masses of the kaons and antikaons in strongly magnetized asymmetric nuclear matter are studied using a chiral SU(3) model. The medium modifications of the masses of these open strange pseudoscalar mesons arise due to their interactions with the nucleons and scalar mesons within the model. The proton, the charged nucleon, has effects from the Landau energy levels in the presence of the magnetic field. The anomalous magnetic moments (AMM) of the nucleons are taken into consideration in the present study and these are seen to be large at high magnetic fields and high densities. The isospin effects are appreciable at high densities. The density effects are observed to be the dominant medium effects, as compared to the effects from magnetic field and isospin asymmetry. ~
139 - L. Tolos , D. Cabrera , A. Ramos 2008
We study the properties of $K$ and $bar K$ mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels which incorporates the $s$- and p-waves of the kaon-nucleon interaction. The in-medium solution accounts for Pauli blocking effects, mean-field binding on all the baryons involved, and $pi$ and kaon self-energies. We calculate $K$ and $bar K$ (off-shell) spectral functions and single particle properties. The $bar K$ effective mass gets lowered by about -50 MeV in cold nuclear matter at saturation density and by half this reduction at T=100 MeV. The p-wave contribution to the ${bar K}$ optical potential, due to $Lambda$, $Sigma$ and $Sigma^*$ excitations, becomes significant for momenta larger than 200 MeV/c and reduces the attraction felt by the $bar K$ in the nuclear medium.The $bar K$ spectral function spreads over a wide range of energies, reflecting the melting of the $Lambda (1405)$ resonance and the contribution of $YN^{-1}$ components at finite temperature. In the $KN$ sector, we find that the low-density theorem is a good approximation for the $K$ self-energy close to saturation density due to the absence of resonance-hole excitations. The $K$ potential shows a moderate repulsive behavior, whereas the quasi-particle peak is considerably broadened with increasing density and temperature. We discuss the implications for the decay of the $phi$ meson at SIS/GSI energies as well as in the future FAIR/GSI project.
We study the medium modifications of the spectral functions as well as production cross-sections of the strange vector mesons ($phi$, $K^*$ and $bar {K^*}$) in isospin asymmetric strange hadronic matter. These are obtained from the in-medium masses o f the open strange mesons and the decay widths $phi rightarrow Kbar K$, $K^* rightarrow Kpi$ and $bar {K^*} rightarrow {bar K}pi$ in the hadronic medium. The decay widths are computed using a field theoretic model of composite hadrons with quark/antiquark constituents, from the matrix element of the light quark-antiquark pair creation term of the free Dirac Hamiltonian between the initial and final states. The matrix element is multiplied with a coupling strength parameter for the light quark-antiquark pair creation, which is fitted to the observed vacuum decay width of the decay process. There are observed to be substantial modifications of the spectral functions as well as production cross-sections of these vector mesons due to isospin asymmetry as well as strangeness of the hadronic medum at high densities. These studies should have observable consequences, e.g. in the yield of the hidden and open strange mesons arising from the isospin asymmetric high energy heavy ion collisions at the Compressed baryonic matter (CBM) experiments at the future facility at GSI.
106 - Amruta Mishra , S.P. Misra 2020
The masses and decay widths of charmonium states are studied in the presence of strong magnetic fields. The mixing between the pseudoscalar and vector charmonium states at rest is observed to lead to appreciable negative (positive) shifts in the mass es of the pseudoscalar (longitudinal component of the vector) charmonium states in vacuum/hadronic medium in the presence of high magnetic fields. The pseudoscalar and vector charmonium masses in the hadronic medium, calculated in an effective chiral model from the medium changes of a scalar dilaton field, have additional significant modifications due to the mixing effects. The masses of the $D$ and $bar D$ mesons in the magnetized hadronic matter are calculated within the chiral effective model. The partial decay widths of the vector charmonium state to $Dbar D$ are computed using a field theoretical model for composite hadrons with quark/antiquark constituents, and are compared to the decay widths calculated using an effective hadronic Lagrangian. The effects of the mixing are observed to lead to significant contributions to the masses of the pseusoscalar and vector charmonium states, and an appreciable increase in the decay width $psi(3770) rightarrow Dbar D$ at large values of the magnetic fields. These studies of the charmonium states in strong magnetic fields should have observable consequences on the dilepton spectra, as well as on the production of the open charm mesons and the charmonium states in ultra relativistic heavy ion collision experiments.
We investigate the effects of very strong magnetic fields upon the equation of state of dense bayonic matter in which hyperons are present. In the presence of a magnetic field, the equation of state above nuclear density is significantly affected bot h by Landau quantization and magnetic moment interactions, but only for field strengths $B>5times10^{18}$ G. The former tends to soften the EOS and increase proton and lepton abundances, while the latter produces an overall stiffening of the EOS. Each results in a supression of hyperons relative to the field-free case. The structure of a neutron star is, however, primarily determined by the magnetic field stress. We utilize existing general relativistic magneto-hydrostatic calculations to demonstrate that maximum average fields within a stable neutron are limited to values $Ble 1-3 times10^{18}$ G. This is not large enough to significantly influence particle compositions or the matter pressure, unless fluctuations dominate the average field strengths in the interior or configurations with significantly larger field gradients are considered.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا