ﻻ يوجد ملخص باللغة العربية
We performed simultaneous observations of the H2O 6(1,6) - 5(2,3) (22.235080 GHz) and SiO v= 1, 2, J = 1 - 0, SiO v = 1, J = 2 - 1, 3 - 2 (43.122080, 42.820587, 86.243442, and 129.363359 GHz) masers towards the suspected D-type symbiotic star, V627 Cas, using the Korean VLBI Network. Here, we present astrometrically registered maps of the H2O and SiO v = 1, 2, J = 1 - 0, SiO v = 1, J = 2 - 1 masers for five epochs from January 2016 to June 2018. Distributions of the SiO maser spots do not show clear ring-like structures, and those of the H2O maser are biased towards the north-north-west to west with respect to the SiO maser features according to observational epochs. These asymmetric distributions of H2O and SiO masers are discussed based on two scenarios of a bipolar outflow and the presence of the hot companion, a white dwarf, in V627 Cas. We carried out ring fitting of SiO v = 1, and v = 2 masers and estimated the expected position of the cool red giant. The ring radii of the SiO v = 1 maser are slightly larger than those of the SiO v = 2 maser, as previously known. Our assumption for the physical size of the SiO maser ring of V627 Cas to be the typical size of a SiO maser ring radius (sim4 au) of red giants yields the distance of V627 Cas to be sim1 kpc.
We investigate the use of 183 GHz H2O masers for characterization of the physical conditions and mass loss process in the circumstellar envelopes of evolved stars. We used APEX SEPIA Band 5 to observe the 183 GHz H2O line towards 2 Red Supergiant and
H2O (22 GHz) and SiO masers (43, 86, 129 GHz) in the bipolar proto-planetary nebula OH231.8+4.2 were simultaneously monitored using the 21-m antennas of the Korean VLBI Network in 2009-2015. Both species exhibit periodic flux variations that correlat
We obtained, for the first time, astrometrically registered maps of the 22.2 GHz H2O and 42.8, 43.1, and 86.2 GHz SiO maser emission toward the semiregular b-type variable (SRb) R Crateris, at three epochs (2015 May 21, and 2016 January 7 and 26) usi
We present observational results of the submillimeter H2O and SiO lines toward a candidate high-mass young stellar object Orion Source I using ALMA. The spatial structures of the high excitation lines at lower-state energies of >2500 K show compact s
Maser lines of OH, H2 O, and SiO are commonly observed in O-rich AGB stars, but their presence after the end of the Asymptotic Giant Branch (AGB) phase is linked to non-spherical mass-loss processes. IRAS 15452-5459 is a post-AGB star with an hourgla