ترغب بنشر مسار تعليمي؟ اضغط هنا

Morphological and spectral study of 4FGL J1115.1-6118 in the region of the young massive stellar cluster NGC 3603

58   0   0.0 ( 0 )
 نشر من قبل Lab Saha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف L. Saha




اسأل ChatGPT حول البحث

We report a detailed study of an unidentified gamma-ray source located in the region of the compact stellar cluster NGC 3603. This is a star-forming region (SFR) powered by a massive cluster of OB stars. A dedicated analysis of about 10 years of data from 10 GeV - 1 TeV, provided by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope, yields the detection of a pointlike source at a significance of 9$sigma$. The source photon spectrum can be described by a power-law model with best fit spectral index of $2.35 pm 0.03$. In addition, the analysis of a deep Chandra image in the 0.5 - 7 keV band reliably rules out an extragalactic origin for the gamma rays. We also conclude that the broadband spectral energy distribution of the point source can be explained well with both leptonic and hadronic models. No firm evidence of association with any other classes of known gamma-ray emitters is found, therefore we speculate that 4FGL J1115.1-6118 is a gamma-ray emitting SFR.


قيم البحث

اقرأ أيضاً

Early release science observations of the cluster NGC3603 with the WFC3 on the refurbished HST allow us to study its recent star formation history. Our analysis focuses on stars with Halpha excess emission, a robust indicator of their pre-main sequen ce (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Halpha excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.
We investigate the massive star content of NGC 3603, the closest known giant H II region. We have obtained spectra of 26 stars in the central cluster using the Baade 6.5-m telescope (Magellan I). Of these 26 stars, 16 had no previous spectroscopy. We also obtained photometry of all of the stars with previous or new spectroscopy, primarily using archival HST ACS/HRC images. We use these data to derive an improved distance to the cluster, and to construct an H-R diagram for discussing the masses and ages of the massive star content of this cluster.
Contemporary theory holds that massive stars gather mass during their initial phases via accreting disk-like structures. However, conclusive evidence for disks has remained elusive for the most massive young objects. This is mainly due to significant observational challenges. Incisive studies, even targeting individual objects, are therefore relevant to the progression of the field. NGC 3603 IRS 9A* is a young massive stellar object still surrounded by an envelope of molecular gas. Previous mid-infrared observations with long-baseline interferometry provided evidence for a disk of 50 mas diameter at its core. This work aims at a comprehensive study of the physics and morphology of IRS 9A at near-infrared wavelengths. New sparse aperture masking interferometry data taken with NACO/VLT at Ks and Lp filters were obtained and analysed together with archival CRIRES spectra of the H2 and BrG lines. The calibrated visibilities recorded at Ks and Lp bands suggest the presence of a partially resolved compact object of 30 mas at the core of IRS 9A, together with the presence of over-resolved flux. The spectroastrometric signal of the H2 line shows that this spectral feature proceeds from the large scale extended emission (300 mas) of IRS 9A, while the BrG line appears to be formed at the core of the object (20 mas). This scenario is consistent with the brightness distribution of the source for near- and mid-infrared wavelengths at various spatial scales. However, our model suffers from remaining inconsistencies between SED modelling and the interferometric data. Moreover, the BrG spectroastrometric signal indicates that the core of IRS 9A exhibits some form of complexity such as asymmetries in the disk. Future high-resolution observations are required to confirm the disk/envelope model and to flesh out the details of the physical form of the inner regions of IRS 9A.
We have used new, deep, visible and near infrared observations of the compact starburst cluster in the giant HII region NGC 3603 and its surroundings with the WFC3 on HST and HAWK-I on the VLT to study in detail the physical properties of its interme diate mass (~ 1 - 3 M_sun) stellar population. We show that after correction for differential extinction and actively accreting stars, and the study of field star contamination, strong evidence remains for a continuous spread in the ages of pre-main sequence stars in the range ~ 2 to ~ 30 Myr within the temporal resolution available. Existing differences among presently available theoretical models account for the largest possible variation in shape of the measured age histograms within these limits. We also find that this isochronal age spread in the near infrared and visible Colour-Magnitude Diagrams cannot be reproduced by any other presently known source of astrophysical or instrumental scatter that could mimic the luminosity spread seen in our observations except, possibly, episodic accretion. The measured age spread and the stellar spatial distribution in the cluster are consistent with the hypothesis that star formation started at least 20-30 Myrs ago progressing slowly but continuously up to at least a few million years ago. All the stars in the considered mass range are distributed in a flattened oblate spheroidal pattern with the major axis oriented in an approximate South-East - North-West direction, and with the length of the equatorial axis decreasing with increasing age. This asymmetry is most likely due to the fact that star formation occurred along a filament of gas and dust in the natal molecular cloud oriented locally in this direction.
The W51 complex hosts the supernova remnant W51C which is known to interact with the molecular clouds in the star forming region W51B. In addition, a possible pulsar wind nebula CXO J192318.5+140305 was found likely associated with the supernova remn ant. Gamma-ray emission from this region was discovered by Fermi/LAT (between 0.2 and 50 GeV) and H.E.S.S. (>1 TeV). The spatial distribution of the events could not be used to pinpoint the location of the emission among the pulsar wind nebula, the supernova remnant shell and/or the molecular cloud. However, the modeling of the spectral energy distribution presented by the Fermi/LAT collaboration suggests a hadronic emission mechanism. We performed observations of the W51 complex with the MAGIC telescopes for more than 50 hours. The good angular resolution in the medium (few hundred GeV) to high (above 1 TeV) energies allow us to perform morphological studies. We detect an extended emission of very-high-energy gamma rays, with a significance of 11 standard deviations. We extend the spectrum from the highest Fermi/LAT energies to sim 5 TeV and find that it follows a single power law with an index of 2.58 pm 0.07stat pm 0.22syst . The main part of the emission coincides with the shocked cloud region, while we find a feature extending towards the pulsar wind nebula. The possible contribution of the pulsar wind nebula, assuming a point-like source, shows no dependence on energy and it is about 20% of the overall emission. The broad band spectral energy distribution can be explained with a hadronic model that implies proton acceleration above 100 TeV. This result, together with the morphology of the source, tentatively suggests that we observe ongoing acceleration of ions in the interaction zone between supernova remnant and cloud. These results shed light on the long-standing problem of the origin of galactic cosmic rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا