ترغب بنشر مسار تعليمي؟ اضغط هنا

Cosmological Evolution of Flat-Spectrum Radio Quasars based on the {it Swift}/BAT 105-month Catalog and Their Contribution to the Cosmic MeV Gamma-ray Background Radiation

124   0   0.0 ( 0 )
 نشر من قبل Yasushi Fukazawa
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new X-ray luminosity function of flat-spectrum radio quasars (FSRQs) utilizing the latest {it Swift}/BAT 105-month X-ray source catalog. Contrary to previous studies of FSRQs in the X-ray band, using the luminosity-dependent density evolution model, we find that FSRQs show evolutionary peaks at $zsim1-2$ depending on luminosities. Our result is rather consistent with the evolution of FSRQs seen in the radio and GeV bands, although the number density is a factor of 5--10 smaller. We further explore the contribution of FSRQs to the cosmic MeV gamma-ray background radiation. We find that FSRQs can explain only $sim3$% of the observed MeV gamma-ray background fluxes around 1 MeV, indicating other populations are required. Future MeV gamma-ray observations will be keys for understanding the origin of the MeV gamma-ray background radiation.



قيم البحث

اقرأ أيضاً

214 - Yoshiyuki Inoue 2011
The Fermi gamma-ray satellite has recently detected gamma-ray emissions from radio galaxy cores. From these samples, we first examine the correlation between the luminosities at 5 GHz, L_{5GHz}, and at 0.1-10 GeV, L_{gamma}, of these gamma-ray loud r adio galaxies. We find that the correlation is significant with L_{gamma} propto L_{5GHz}^{1.16} based on a partial correlation analysis. Using this correlation and the radio luminosity function (RLF) of radio galaxies, we further explore the contribution of gamma-ray loud radio galaxies to the unresolved extragalactic gamma-ray background (EGRB). The gamma-ray luminosity function is obtained by normalizing the RLF to reproduce the source count distribution of the Fermi gamma-ray loud radio galaxies. We find that gamma-ray loud radio galaxies will explain ~25% of the unresolved Fermi EGRB flux above 100 MeV and will also make a significant contribution to the EGRB in the 1-30 MeV energy band. Since blazars explain 22% of the EGRB above 100 MeV, radio loud active galactic nuclei (AGNs) population explains ~47% of the unresolved EGRB. We further make an interpretation on the origin of the EGRB. The observed EGRB spectrum at 0.2-100 GeV does not show an absorption signature by the extragalactic background light. Thus, the dominant population of the origin of EGRB at very high energy (>30 GeV) might be nearby gamma-ray emitting sources or sources with very hard gamma-ray spectrum.
Hard X-ray ($geq 10$ keV) observations of Active Galactic Nuclei (AGN) can shed light on some of the most obscured episodes of accretion onto supermassive black holes. The 70-month Swift/BAT all-sky survey, which probes the 14-195 keV energy range, h as currently detected 838 AGN. We report here on the broad-band X-ray (0.3-150 keV) characteristics of these AGN, obtained by combining XMM-Newton, Swift/XRT, ASCA, Chandra, and Suzaku observations in the soft X-ray band ($leq 10$ keV) with 70-month averaged Swift/BAT data. The non-blazar AGN of our sample are almost equally divided into unobscured ($N_{rm H}< 10^{22}rm cm^{-2}$) and obscured ($N_{rm H}geq 10^{22}rm cm^{-2}$) AGN, and their Swift/BAT continuum is systematically steeper than the 0.3-10 keV emission, which suggests that the presence of a high-energy cutoff is almost ubiquitous. We discuss the main X-ray spectral parameters obtained, such as the photon index, the reflection parameter, the energy of the cutoff, neutral and ionized absorbers, and the soft excess for both obscured and unobscured AGN.
123 - Y. G. Zheng 2016
A model-dependent method is proposed to determine the location of the $gamma$-ray emitting region for a given flat spectrum radio quasar (FSRQ). In the model, the extra-relativistic electrons are injected at the base of the jet and non-thermal photon s are produced by both synchrotron radiation and inverse-Comtpon (IC) scattering in the energy dissipation region. The target photons dominating inverse-Comtpon scattering originate from both synchrotron photons and external ambient photon fields, and the energy density of external radiation field is a function of the distance between the position of dissipation region and a central super-massive black hole, and their spectra are seen in the comoving frame. Moreover, the energy dissipation region could be determined by the model parameter through reproducing the $gamma$-ray spectra. Such a model is applied to reproduce the quasi-simultaneous multi-wavelength observed data for 36 FSRQs. In order to define the width of the broad-line region shell and dusty molecular torus shell, a simple numerical constraint is used to determine the outer boundary of the broad-line region and dusty molecular torus. Our results show that 1) the $gamma$-ray emitting regions are located at the range from 0.1 pc to 10 pc; 2) the $gamma$-ray emitting regions are located outside the broad-line regions and within the dusty molecular tori; and 3) the $gamma$-ray emitting region are located closer to the dusty molecular torus ranges than the broad-line regions. Therefore, it may concluded that a direct evidence for the emph{far site} scenario could be obtained on the basis of the model results.
We present the catalog of sources detected in the first 22 months of data from the hard X-ray survey (14--195 keV) conducted with the BAT coded mask imager on the swift satellite. The catalog contains 461 sources detected above the 4.8 sigma level wi th BAT. High angular resolution X-ray data for every source from Swift XRT or archival data have allowed associations to be made with known counterparts in other wavelength bands for over 97% of the detections, including the discovery of ~30 galaxies previously unknown as AGN and several new Galactic sources. A total of 266 of the sources are associated with Seyfert galaxies (median redshift z ~ 0.03) or blazars, with the majority of the remaining sources associated with X-ray binaries in our Galaxy. This ongoing survey is the first uniform all sky hard X-ray survey since HEAO-1 in 1977. Since the publication of the 9-month BAT survey we have increased the number of energy channels from 4 to 8 and have substantially increased the number of sources with accurate average spectra. The BAT 22-month catalog is the product of the most sensitive all-sky survey in the hard X-ray band, with a detection sensitivity (4.8 sigma) of 2.2e-11 erg/cm2/s (1 mCrab) over most of the sky in the 14--195 keV band.
We present the catalog of sources detected in 70 months of observations of the BAT hard X-ray detector on the Swift gamma-ray burst observatory. The Swift-BAT 70 month survey has detected 1171 hard X-ray sources (more than twice as many sources as th e previous 22 month survey) in the 14-195 keV band down to a significance level of 4.8 sigma, associated with 1210 counterparts. The 70 month Swift-BAT survey is the most sensitive and uniform hard X-ray all-sky survey and reaches a flux level of 1.03e-11 ergs/sec/cm2 over 50% of the sky and 1.34e-11 ergs/sec/cm2 over 90% of the sky. The majority of new sources in the 70 month survey continue to be AGN, with over 700 in the 70 month survey catalog. As part of this new edition of the Swift-BAT catalog, we also make available 8-channel spectra and monthly-sampled lightcurves for each object detected in the survey at the Swift-BAT 70 month website.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا