ترغب بنشر مسار تعليمي؟ اضغط هنا

KELT-9 bs Asymmetric TESS Transit Caused by Rapid Stellar Rotation and Spin-Orbit Misalignment

77   0   0.0 ( 0 )
 نشر من قبل Johnathon Ahlers
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

KELT-9 b is an ultra hot Jupiter transiting a rapidly rotating, oblate early-A-type star in a polar orbit. We model the effect of rapid stellar rotation on KELT-9 bs transit light curve using photometry from the Transiting Exoplanet Survey Satellite (tess) to constrain the planets true spin-orbit angle and to explore how KELT-9 b may be influenced by stellar gravity darkening. We constrain the host stars equatorial radius to be $1.089pm0.017$ times as large as its polar radius and its local surface brightness to vary by $sim38$% between its hot poles and cooler equator. We model the stellar oblateness and surface brightness gradient and find that it causes the transit light curve to lack the usual symmetry around the time of minimum light. We take advantage of the light curve asymmetry to constrain KELT-9 bs true spin orbit angle (${87^circ}^{+10^circ}_{-11^circ}$), agreeing with citet{gaudi2017giant} that KELT-9 b is in a nearly polar orbit. We also apply a gravity darkening correction to the spectral energy distribution model from citet{gaudi2017giant} and find that accounting for rapid rotation gives a better fit to available spectroscopy and yields a more reliable estimate for the stars polar effective temperature.



قيم البحث

اقرأ أيضاً

Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple co-planar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disr uption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting co-planar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial-velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.
AU Mic is a young planetary system with a resolved debris disc showing signs of planet formation and two transiting warm Neptunes near mean-motion resonances. Here we analyse three transits of AU Mic b observed with the CHaracterising ExOPlanet Satel lite (CHEOPS), supplemented with sector 1 and 27 Transiting Exoplanet Survey Satellite (TESS) photometry, and the All-Sky Automated Survey (ASAS) from the ground. The refined orbital period of AU Mic b is 8.462995 pm 0.000003 d, whereas the stellar rotational period is P_{rot}=4.8367 pm 0.0006 d. The two periods indicate a 7:4 spin--orbit commensurability at a precision of 0.1%. Therefore, all transits are observed in front of one of the four possible stellar central longitudes. This is strongly supported by the observation that the same complex star-spot pattern is seen in the second and third CHEOPS visits that were separated by four orbits (and seven stellar rotations). Using a bootstrap analysis we find that flares and star spots reduce the accuracy of transit parameters by up to 10% in the planet-to-star radius ratio and the accuracy on transit time by 3-4 minutes. Nevertheless, occulted stellar spot features independently confirm the presence of transit timing variations (TTVs) with an amplitude of at least 4 minutes. We find that the outer companion, AU Mic c may cause the observed TTVs.
We present the discoveries of KELT-25b (TIC 65412605, TOI-626.01) and KELT-26b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A-stars. The transit signals were initially detected by the KELT survey, and subs equently confirmed by textit{TESS} photometry. KELT-25b is on a 4.40-day orbit around the V = 9.66 star CD-24 5016 ($T_{rm eff} = 8280^{+440}_{-180}$ K, $M_{star}$ = $2.18^{+0.12}_{-0.11}$ $M_{odot}$), while KELT-26b is on a 3.34-day orbit around the V = 9.95 star HD 134004 ($T_{rm eff}$ =$8640^{+500}_{-240}$ K, $M_{star}$ = $1.93^{+0.14}_{-0.16}$ $M_{odot}$), which is likely an Am star. We have confirmed the sub-stellar nature of both companions through detailed characterization of each system using ground-based and textit{TESS} photometry, radial velocity measurements, Doppler Tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of $R_{rm P}$ = $1.64^{+0.039}_{-0.043}$ $R_{rm J}$, and a 3-sigma upper limit on the companions mass of $sim64~M_{rm J}$. For KELT-26b, we infer a planetary mass and radius of $M_{rm P}$ = $1.41^{+0.43}_{-0.51}$ $M_{rm J}$ and $R_{rm P}$ = $1.940^{+0.060}_{-0.058}$ $R_{rm J}$. From Doppler Tomographic observations, we find KELT-26b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the textit{TESS} data. KELT-25b appears to be in a well-aligned, prograde orbit, and the system is likely a member of a cluster or moving group.
165 - C. A. Watson 2010
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-ali gned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disk, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disk was well-aligned with the host star. Recent work by a number of authors has challenged this assumption by proposing mechanisms that act to drive the star-disk interaction out of alignment during the pre-main sequence phase. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
AD Leonis is a nearby magnetically active M dwarf. We find Doppler variability with a period of 2.23 days as well as photometric signals: (1) a short period signal which is similar to the radial velocity signal albeit with considerable variability; a nd (2) a long term activity cycle of 4070$pm$120 days. We examine the short-term photometric signal in the available ASAS and MOST photometry and find that the signal is not consistently present and varies considerably as a function of time. This signal undergoes a phase change of roughly 0.8 rad when considering the first and second halves of the MOST data set which are separated in median time by 3.38 days. In contrast, the Doppler signal is stable in the combined HARPS and HIRES radial velocities for over 4700 days and does not appear to vary in time in amplitude, phase, period or as a function of extracted wavelength. We consider a variety of star-spot scenarios and find it challenging to simultaneously explain the rapidly varying photometric signal and the stable radial velocity signal as being caused by starspots co-rotating on the stellar surface. This suggests that the origin of the Doppler periodicity might be the gravitational tug of a planet orbiting the star in spin-orbit resonance. For such a scenario and no spin-orbit misalignment, the measured $v sin i$ indicates an inclination angle of 15.5$pm$2.5 deg and a planetary companion mass of 0.237$pm$0.047 M$_{rm Jup}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا